
Assignments

• Homework 2 is up. Meaning you send me your Overleaf email address in
Slack and I share the homework document with you.

• Goal – you compile some code, run it on different clusters, answer some questions
and make a couple of plots in Overleaf Latex.

• Along the way I know that you
1) Can compile C code with a makefile (you don’t have to write anything)
2) You can setup a conda environment.
3) You can open a jupyter notebook and enter data into a plot
4) Upload that to overleaf so Nick and I can see your progress.

This will be the pattern for all homeworks and projects in this class.

mfricke@hopper:~ $ module load miniconda3
mfricke@hopper:~ $ conda create --name plotting matplotlib ipykernel

Install Matplotlib with Conda

mfricke@hopper:~ $ git clone https://github.com/gmfricke/SIMD_HW

Clone Homework Repository

mfricke@hopper:~ $ cd SIMD_HW
mfricke@hopper:~ $ make

Make addition benchmark code

https://hopper.alliance.unm.edu:8000

Lecture 4: Devices
High Performance Computers

What is Linux?

http://en.wikipedia.org/wiki/Darwin_%28operating_system%29

The Kernel

What is Linux?
Linux + GNU Utilities = Free Unix

• Linux is an O/S core written by Linus
Torvalds and others

(Bitten by a Penguin)

• a set of programs written by Richard
Stallman and others. They are the GNU
utilities.

http://www.gnu.org/

GNU stands for GNU is Not Unix

TUX: Torvold’s Linux

http://www.gnu.org/

GNU/Linux

Mac OS X
• Darwin, the system on which Apple's Mac OS X is built, is a

derivative of 4.4BSD-Lite2 and FreeBSD. In other words, the
Mac is a Unix system!

� For X11 (graphics), see XQuartz
(http://xquartz.macosforge.org/landing/)

Udevd

• The udevd service monitors the kernel for hardware events:

Enter systemctl status system-udevd

And creates device files based on those events.

Device Files

• Most everything in Linux is a file.
• A file in Linux is anything that supports simple input and output

including many devices.
• Interacting with a file is really just a way to ask the kernel to get or

put data somewhere
• Device files are stored in the /dev directory

Enter ls /dev
• Many device files point to a program that generates or consumes data

Enter head -n 1 /dev/urandom

Device Files

• Device files are stored in the /dev directory
Enter ls /dev

• Many device files point to a program that generates or consumes data
Enter head -n 1 /dev/urandom
Provides a stream of random output (e.g. for creating encryption keys)

Enter echo blah blah > /dev/null
Sometimes a process will generate output we don’t care about. We can send it to /dev/null
where it is consumed and lost.
E.g. when some programs are run for days at a time and they sent informational output to
standard out they can consume all available memory. Instead, we throw away the output.

Device Files - Types

Devices have permissions just like other files:
Enter ls -l /dev

• The type of device is given by the characters before the permission triplet:

• “b”: block – random access device
• “c”: character – data streams (e.g. /dev/null, /dev/urandom)
• “p”: pipe – a data stream from one process to another (unidirectional)
• “s”: socket – a data stream between two processes (bidirectional)

Devices without Files

• OK, not everything is a file. Network cards don’t have a device file.
• Device files have read and write functions that take bytes, but

networks work on packets so their read and write functions are more
complicated.
• Solaris systems did have device files for network cards btw

SysFS

• /dev provides a simple interface through the kernel to devices
• Downsides are that it is a bit too simple and the devices are named in

the order that the kernel found them
• If you remove a device then the names the kernel gives everything

else might change
• A more recent approach is to use sysfs to get information about

hardware
• Devices files are kept in /sys/devices

Enter ls -l /sys/devices

SysFS

• /dev provides a simple interface through the kernel to devices
• Devices files are kept in /sys/devices

Enter ls -l /sys/devices
• Sysfs is used for managing and getting info about devices
• /dev is for reading and writing to them
• To find the sysfs file that corresponds to a /dev/ device file use this

command:
• Enter udevadm info --query all /dev/sda
Is sda on Wheeler a spinning disk or SSD?
How about on your workstation?

Udev

• To monitor udev detected events live:
Enter udevadm monitor

After running udevadm monitor insert a usb device into your computer.
You should see hardware events.

• Udev allows us to set rules for how hardware is handled:
Enter cat /etc/udev/rules.d/60-ipath.rules

dd command: Data Duplicator

• dd’s function is to read and write block or stream data to device files.

• This makes it a powerful tool*

Enter dd if=/dev/random of=/dev/stdout bs=128 count=1

*Nicknamed the disk destroyer

What do you see. What do you think /dev/stdout is?

/dev/stdout
Let’s take a closer look at /dev/proc/stdout

ls -l /dev/stdout
lrwxrwxrwx 1 root root 15 Aug 23 09:08 /dev/stdout -> /proc/self/fd/1

/proc contains a directory for every running process
(many listed by process ID)

/proc/self refers to the process reading the filesystem (your terminal)
Every process has a file descriptor (fd) so it can communicate.
fd 1 is the standard character stream to the screen (it’s a socket)
fd 2 is standard error
When you write cout in C++ or print() in python you are sending a character stream to /proc/self/fd/1

dd command: Data Duplicator

You can also write block data.

dd if=/dev/urandom of=/dev/sdX bs=1M

Will write the stream of random characters from /dev/urandom to SCSI
drive X in 1 MB chunks.

This will overwrite everything on drive X.

*Nicknamed the disk destroyer

Hard Disk Device Files /dev/sd*

• SCSI: Small Computer System Interface
• Linux uses SCSI protocols to talk to disks even SATA disks

You can list SCSI devices on the Wheeler and Hopper head nodes:

Enter lsscsi

Enter cat /proc/scsi/scsi

(Again “everything in Linux is a file”)

Virtual Disk Device Files /dev/xvd* /dev/vd*

• Some disks are optimized for virtual environments such as Amazon
Web Services or VitualBox.

• Basically, a Virtual Disk Device allows virtual machines to
communicate with the real disk faster.

Non-Volatile Memory Device Files
/dev/nvme*
• NonVolatile Memory Express (NVME) is a protocol for talking to solid state drives

(SSDs) and flash drives.

• SATA supports up to 6 Gbit/s, which was a lot faster than hard drives used to be
(even older SSDs).
• SCSI devices support a queue of up to 28 commands at a time. SAS drives up to 28

so they can handle multiuser systems with lots of requests. SATA is intended for
single user workstations and has a typical queue depth of 25 commands.

Enter lsscsi –l to see the queue depth

• PCI Express sockets are much faster than SATA connections with some capable of
32 Gbit/s since recent SSDs are capable of 25 Gbit/s speeds and support 216

commands in the queue.

Device Mapper Device Files (LVM) /dev/dm*
or /dev/mapper*
• A challenge with disk devices has always been that they are hard to

change.
• When you partition a disk into filesystems (more later) it is hard to change

the size of the partition when it fills up.
• Logical Volume Management (LVMs) solve that problem by abstracting the

disk and allowing you to change the virtual disks size even while the OS is
running.
• If you run out of space, you can just add another physical drive to the LVM

and expand the partition.
• Enter ls /dev/mapper* and df –h | grep mapper

on wheeler to see that we use LVMs.

Terminal Device Files /dev/tty* /dev/pts*
• Terminals are devices that take character streams from

processes and send them to and from Input/Output
devices like this VT100 from 1978.

• Over the years physical terminals were replaced with
terminal emulators but the protocols remained
basically the same. It is always easier to reuse old code.

• The VT100 protocol is still used because is supports
ANSI colors.

• You are typing and reading text in a virtual terminal
whenever you use BASH.

Terminal Device Files /dev/tty* /dev/pts*
• Terminals that read directly from a local keyboard and write

to a computer monitor are named /dev/tty*

• Terminals that connect to a remote program are called
pseudoterminals and they are named /dev/pts*

Terminals that run over SSH are pseudoterminals.

Enter tty to get the path to the terminal to which you are
connected. E.g. /dev/pts/3. Try it on hopper.

Now try writing to the terminal
Enter echo Hello > /dev/pts/3

Terminal Device Files /dev/tty* /dev/pts*
Let’s read from your terminal:

Enter read data < /dev/pts/3

This stores whatever character stream you enter next
into the variable “data”.
We can display the contents of that variable:
Enter echo $data

TTY stands for tele-typewriter

Terminal Device Files
/dev/tty* /dev/pts*

Open a new terminal and ssh into hopper
(so you have two ssh sessions on Hopper).

Enter tty to get the device file path of
your new SSH pseudoterminal.

From your first terminal

Enter echo Hello > /dev/pts/#

Where # is the device file for your second
terminal.

Terminal Device Files /dev/tty* /dev/pts*
• Virtual terminals read and write to hardware connected directly to the

computer (/dev/tty*)
• Many terminals have a getty process that waits for input on a terminal.

Gettys guard access by asking for a login name and password.
• You can switch between virtual terminals with Alt-F# (F here is the function

keys on your keyboard and # is the number of the device file).
• So to switch to Terminal 1 on your Linux machine enter Alt-F1.
• This is used all the time for troubleshooting. If the graphical terminal that

comes up breaks and I want to login to Linux to fix it, I hit Alt-F1 to get a
local text-based terminal so I can login.
• Try it on your Linux workstation.

Terminal Device
Files /dev/tty*
/dev/pts*

• Terminals can be text or
graphical.

• If you installed a GUI with Linux
then a graphical Greeter will be
waiting for input from one of the
TTY device files.

• Keep pressing Alt-F#
incrementing # until you get to
the graphical terminal.

Udev Overview
• Udev is responsible for creating device files, and does the following:

1. The kernel sends a uevent message to the systemd-udevd service.
2. Udev parses the uvent message
3. Udev applies all the rules in /etc/udev/rules.d and /lib/udev/rules.d to decide

what to do about the hardware uevent message.

Take a look at the rules for handling mice by entering
cat /lib/udev/rules.d/60-nvidia.rules

The mknod command makes a device files named /dev/nvidia*

Enter grep -R tty /lib/udev/rules.d/
To see all the rules that create virtual terminals

