
Lecture 19: Scaling
Amdahl’s law and Gustafson’s law

Current Assignments
•Project 1: High Performance Linpack
• You should have received an overleaf invitation.
• A link to the project description is on the website and posted

in slack.
• The project is due in 1 week.
• You will need to schedule one meeting with Ryan per week to

get help and so we can monitor progress (11:59pm on April
22nd).
•We only have time for 2 projects, so they are each worth 20%

of your final grade.

Speedup and Scalability
§ Speedup, Scalability, strong scaling, weak scaling
§ Amdahl’s law
§ Gustafson’s law

Performance expectation

§ When using 1 processor, the sequential program runs for 100
seconds. When we use 10 processors, should the program run for 10
times faster?

v This works only for embarrassingly parallel computations – parallel computations that
can be divided into completely independent computations that can be executed
simultaneously. There may have no interaction between separate processes; sometime
the results need to be collected.
q Embarrassingly parallel applications are the kind that can scale up to a very large

number of processors. Examples: Monte Carlo analysis, numerical integration, 3D
graphics rendering, and many more.

v In other types of applications, the computation components interact and have
dependencies, which prevents the applications from using a large number of
processors.

Scalability

§ Scalability of a program measures how many processors that the
program can effectively use.

Speedup and Strong scaling

§ Let 𝑇! be the execution time for a computation to run on 1 processor
and 𝑇"	be the execution time for the computation (with the same
input – same problem) to run on P processors.

 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = $!
$"

o Factor by which the use of P processors speeds up execution time relative to

1 processor for the same problem.
o Since the problem size is fixed, this is referred to as “Strong scaling”.
oGiven a computation graph, what is the highest speedup that can be

achieved?

Speedup

§ 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = $!
$"

§ Typically, 1 ≤ 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 ≤ 𝑃
§ The speedup is ideal if 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑃
§ Linear speedup: 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = 𝑘×𝑃 for some constant 0 < 𝑘 < 1

Efficiency

§ The efficiency of an algorithm using P processors is
Efficiency = speedup(P) / P

o Efficiency estimates how well-utilized the processors are in running the
parallel program.

o Ideal speedup means Efficiency = 1 (100% efficiency).

Ahmdal’s Law
(IBM Systems Architect)

How much faster is our problem solved as
more CPUs are added?

Ahmdal recognized that the code consists of
parts that are inherently serial and parts that
are parallelable. Any parallel computation is
limited by the serial part.

Better than that we can estimate the fraction
of time taken in the serial part and the
parallel part to 1) decide if it’s worth adding
more CPUs and 2) identify bottlenecks caused
by serial code.

Gene Ahmdal

Amdahl’s Law (fixed size speedup, strong scaling)
§ Given a program, let f be the fraction that must be sequential and

1-f be the fraction that can be parallelized

§ 𝑇% = 𝑓	𝑇! +
!&' $!
%

	𝑤ℎ𝑒𝑟𝑒	
 𝑇! is the time taken with one process (think CPU) (independent

 variable)
 P is the number of processes (independent variable)
 𝑇% is the time taken given P (independent variable)

 f is the dependent variable we can estimate.
 We measure the independent variables.

Amdahl’s Law (fixed size speedup, strong scaling)
§ Given a program, let f be the fraction that must be sequential and

1-f be the fraction that can be parallelized

§ 𝑇% = 𝑓	𝑇! +
!&' $!
%

§ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = $!
$"
= $!

'	$!(
!#$ %!
"

= !
'((!&')/%

§ When 𝑃 → ∞, 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝑃 = !
'

§ Original paper: Amdahl, Gene M. (1967). "Validity of the Single
Processor Approach to Achieving Large-Scale Computing
Capabilities" . AFIPS Conference Proceedings (30): 483–485.

https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
https://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf

Amdahl’s law

Amdahl’s law: As P increases, the percentage of work in the parallel
region reduces, performance is more and more dominated by the
sequential region.

P=1

time

P=2 P=4

Implication of
Amdahl’s Law

§ For strong scaling, the
speedup is bounded by
the percentage of
sequential portion of the
program, not by the
number of processors!

§ Strong scaling will be hard
to achieve for many
programs.

How do we use this in practice?

§ Perform experiments to find the execution time for different process
counts.

§ This is called a scaling study
§ From the measured times we can fit Ahmdal’s law to find the value

of f (the inherently serial time)

Install scipy and numpy into the plotting
environment so we can do some parameter
estimation

mfricke@hopper:~ $ module load miniconda3
mfricke@hopper:~ $ source activate plotting
(plotting) mfricke@hopper:~ $ conda install scipy numpy

We will use a Julia Fractal Generator as our
example code

We will use a Julia Fractal Generator as our
example code and OpenMP to parallelise the
code for our experiments

https://github.com/gmfricke/Juliaset.git

We will use a Julia Fractal Generator as our
example code and OpenMP to parallelise the
code for our experiments

gcc -fopenmp juliaset.c -o juliaset

We want to perform a parameter sweep over the number of threads

cat juliaset_strong.slurm
#!/bin/bash
#SBATCH --job-name strong_julia
#SBATCH --partition general
#SBATCH --ntasks 1
#SBATCH --cpus-per-task 32
#SBATCH --time 5:00
#SBATCH --output=julia_strong_%a.out
#SBATCH --array 1-7
#SBATCH --mail-user mfricke@unm.edu
OUTPUT_PATH=juliaset_strong_$SLURM_ARRAY_TASK_ID.tga
SCALE_FACTOR=$((2 ** ($SLURM_ARRAY_TASK_ID-1)))
export OMP_NUM_THREADS=$SCALE_FACTOR
FRACTAL_HEIGHT=10000
FRACTAL_WIDTH=2000
echo Scale Factor: $SCALE_FACTOR
echo Number of Threads: $OMP_NUM_THREADS
echo FRACTAL_DIMS: $FRACTAL_HEIGHT x $FRACTAL_WIDTH
./juliaset $FRACTAL_HEIGHT $FRACTAL_WIDTH $OUTPUT_PATH

Strong Scaling

Strong Scaling

Speedup = T1/TN

y = 1/(0.00558 + 0.99442/N)

f is only 0.006

Gustafson’s Law
(scaled speedup,
weak scaling)

§ While Ahmdal’s law lets us
describe the limits of
parallel speedup
Gustafson’s law tells us
how we can benefit from
more CPUs when solving
larger problems.

The Atanasoff–Berry computer (ABC) was the first
automatic electronic digital computer (1941) [replica]

John Gustafson
AMD, Intel

Gustafson’s Law (scaled speedup, weak scaling)
§ Large scale parallel/distributed systems are expected to allow for

solving problem faster or larger problems.
o Amdahl’s Law indicates that there is a limit on how faster it can go.
o How about bigger problems? This is what Gustafson’s Law sheds lights on!

§ In Amdahl’s law, as the number of processors increases, the amount
of work in each node decreases (more processors sharing the
parallel part).

§ In Gustafson’s law, as the number of processors increases, the
amount of work in each node remains the same (doing more work
collectively).

Gustafson’s law

Gustafson’s law: As P increases, the total work on each process remains
the same. So the total work increases with P.

P=1

time

P=2 P=4

Gustafson’s Law (scaled speedup, weak scaling)
§ The work on each processor is 1 (f is the fraction for sequential

program, (1-f) is the fraction for parallel program.
§ With P processor (with the same 𝑇% = 1), the total amount of useful

work is 𝑓 + 1 − 𝑓 𝑃. Thus, 𝑇! = 𝑓 + 1 − 𝑓 𝑃.
§ Thus, speedup(P) = 𝑓 + 1 − 𝑓 𝑃.

No of PEs Strong scaling speedup
(Amdalh’s law, f = 10%)

Weak scaling speedup
(Gustafson’s law, f = 10%)

2 1.82 1.9

4 3.07 3.7

8 4.71 7.3

16 6.40 14.5

100 9.90 90.1

Implication of Gustafson’s law
§ For weak scaling, speedup(P) = 𝑓 + 1 − 𝑓 𝑃

o Speedup is now proportional to P.

§ Scalability is much better when the problem size can increase.
o Many application can use more computing power to solve larger problems

v Weather prediction, large deep learning models.

§ Gustafson, John L. (May 1988). "Reevaluating Amdahl's Law".
Communications of the ACM. 31 (5): 532–3.

http://www.johngustafson.net/pubs/pub13/amdahl.htm
https://en.wikipedia.org/wiki/Communications_of_the_ACM

We want to perform a parameter sweep over the number of threads

cat juliaset_weak.slurm
#!/bin/bash
#SBATCH --job-name weak_julia
#SBATCH --partition general
#SBATCH --ntasks 1
#SBATCH --cpus-per-task 32
#SBATCH --time 5:00
#SBATCH --output=julia_weak_%a.out
#SBATCH --array 1-7
#SBATCH --mail-user mfricke@unm.edu
OUTPUT_PATH=juliaset_weak_$SLURM_ARRAY_TASK_ID.tga
SCALE_FACTOR=$((2 ** ($SLURM_ARRAY_TASK_ID-1)))
export OMP_NUM_THREADS=$SCALE_FACTOR
FRACTAL_HEIGHT=$((10000*$SCALE_FACTOR))
FRACTAL_WIDTH=2000
echo Scale Factor: $SCALE_FACTOR
echo Number of Threads: $OMP_NUM_THREADS
echo FRACTAL_DIMS: $FRACTAL_HEIGHT x $FRACTAL_WIDTH
./juliaset $FRACTAL_HEIGHT $FRACTAL_WIDTH $OUTPUT_PATH

Weak Scaling

Weak Scaling

Scaled Speedup = NT1/TN

y = 0.08415 + 0.91585*N)

f is only 0.08

What’s the point?

§ These laws allow us to determine how software will benefit, or not,
from adding more resources.

§ They allow us to detect bottlenecks in our code that could be
addressed.

§ We can plan what resources to provide instead of just hoping that
more will be faster.

