Lecture 18: Distributed
Computing

Job Arrays and MPI

Current Assignments

*Project 1: High Performance Linpack
* You should have received an overleaf invitation.

* A link to the project description is on the website and posted
in slack.

* The project is due in 2 weeks .

* You will need to schedule one meeting with Ryan per week to
get help and so we can monitor progress (11:59pm on April
22nd).

* We only have time for 2 projects, so they are each worth 20%
of your final grade.

 Embarrassingly Parallel
SLURM Arrays
GNU Parallel

 Coupled Parallelism

o GNUparallel SIUI'ITI

workload manager

A7 WP

We will hge\éga\PF]e%rua$y Eni&&te break. Opportunlty to see theSampIe Footer Text
machine room.

—

[vanilla@hopper ~]% git clone https://lobogit.unm.edu/CARC/workshops.git
Cloning into 'workshops'...

remote: Enumerating objects: 132, done.

remote: Counting objects: 100% (7/5/75), done.

remote: Compressing objects: 100% (43/43), done.

remote: Total 132 (delta 33), reused 74 (delta 32), pack-reused 57

Receiving objects: 100% (132/132), 57.58 KiB | 3.60 MiB/s,
Resolving deltas: 100% (51/51), done.

done.

[vanilla@hopper ~]$% tree

workshops/

— intro_workshop

—— code

|_

[TTT]

— data

|— H20.

slurm

[TTTTTTITT

L— README.md

— calcPiMPI.py

| | — calcPiSerial.py
L— vecadd

Makefile

— vecadd gpu.cu
vecadd mpi_cpu
vecadd mpi_cpu.c
vecaddmpi_cpu.sh
vecadd mpi_gpu.c

gif

| | L— step sizes.txt

F—— calc_pi_array.sh
— calc_pi_mpi.sh

calc_pi_parallel.sh
calc_pi_serial.sh
gaussian.sh
hostname_mpi.sh
vecadd hopper.sh
vecadd xena.sh
workshop_example2.sh
workshop_example3.sh
workshop_example.sh

workshops

[vanilla@ho

workshops/
— intro_worksh
— code
— calc
— calc
IR
. —
— data
k—rua
step
— slurm
F—— calc
— calc
— calc
— calc
— gaus
— host
— veca
— veca
— Wwork
— Work
L

work
L— README.md

pper ~]1% tree

op

PiMPI.py
PiSerial.py

dd

Makefile

— vecadd _gpu.cu
vecadd mpi_cpu
vecadd mpi_cpu.c
vecaddmpi_cpu.sh
vecadd mpi_gpu.c

gjf
sizes.txt

pi array sh

_pi_mpi.
p1_para11e1.sh

_pi_serial.sh

sian.sh
name_mpi.sh
dd_hopper.sh
dd_xena.sh
shop_example2.sh
shop_example3.sh
shop_example.sh

workshops

[vanilla@hopper intro workshop]$ pwd
/users/vanilla/workshops/intro _workshop

[vanilla@hopper intro workshopl$ cat slurm/workshop example.sh
#!/bin/bash

#SBATCH --partition debug

#SBATCH --ntasks 4

#SBATCH --time 00:05:00

#SBATCH --job-name ws_example

#SBATCH --mail-user your_username@unm.edu

#SBATCH --mail-type ALL

hostname

[vanilla@hopper intro workshopl$ sbatch slurm/workshop example.sh
sbatch: Account not specified in script or ~/.default slurm _account,
using latest project

Submitted batch job 5252
[vanilla@hopper intro _workshop]$

[vanilla@hopper intro workshop]$ sbatch slurm/workshop example.sh
sbatch: Account not specified in script or ~/.default slurm _account,
using latest project

Submitted batch job 5252
[vanilla@hopper intro _workshop]$

Compute Node 01

Workflow

Head Node Compute Node 02

User 1

Program A Compute Node 03

Script A

User 2 Compute Node 04

Program B

Compute Node 05

Script B

Workflow

Head Node

User 1
Program A

Script A
User 2

Program B

Script B

Scheduler
Slurm

Compute Node 01

Compute Node 02

Compute Node 03

Compute Node 04

Compute Node 05

Workflow

Head Node

User 1
Program A

Script A
User 2

Program B

Script B

Scheduler

Compute Node 01

Compute Node 02

Compute Node 03

Compute Node 04

Compute Node 05

Workflow

Head Node

User 1
Program A

Script A
User 2

Program B

Script B

Scheduler

Compute Node 01
Script A

Compute Node 02

Compute Node 03

Compute Node 04
Script B

Compute Node 05

Workflow

Head Node

User 1
Program A

Script A
User 2

Program B

Script B

We need something in the script [efe]ag pute Node 01

to run the program on all the
nodes. E.g. srun.

Scheduler

Script A Program A

Compute Node 02
Program A Program A

Compute Node 03
Program A Program A

Compute Node 04
SCript B Program B

Compute Node 05
Program B Program B

[vanilla@hopper intro workshopl$ 1s
code data pbs slurm slurm-5252.out

[vanilla@hopper intro workshopl$ 1s
code data pbs slurm slurm-5252.out

[vanilla@hopper intro workshopl$ cat slurm-5252.out
hopper®©11

[vanilla@hopper intro workshopl$ 1s
code data pbs slurm slurm-5252.out

[vanilla@hopper intro workshopl$ cat slurm-5252.out
hopper®©11

Why did it only run the program once instead of 4 times?

[vanilla@hopper intro workshop]$ sbatch slurm/workshop examplel.sh
sbatch: Account not specified in script or ~/.default slurm _account,
using latest project

Submitted batch job 5252
[vanilla@hopper intro _workshop]$

Serial Program to Calculate =

1 4+ 2

1
W = —
n
>
s L+ 5)

A program that calculates pi using the area under a curve
The program checks the value of pi1 calculated against the
value provided by numpy

time

SYS

numpy np # Value of PI to compare to

(num_steps): #Function to calculate pi
step = 1.0 / num_steps
sum = 0
1 range (num_steps):
X = (1 + 0.5) * step
sum = sum + 4.0 / (1.0 + x * Xx)
pi = step * sum
ok

Check that the caller gave us the number of steps to use
len(sys.argv) != 2:
(, Sys.argv|[0],)
sys.ex1t (1)

num steps = int(sys.argv([1l],10);

Call function to calculate pi
start = time.time() #Start timing
pi = Pi(num_steps)

end = time.time() # End timing

Print our estimation of pi, the difference from numpy's value,
and how long it took
(
%(pi, pi-np.pi, end - start, num steps))
sys.ex1t(0)

[vanilla@hopper intro workshop]$ module 1oad miniconda3
[vanilla@hopper intro workshopl]$ conda create -n numpy numpy

Wait a while — introduce yourselves to your neighbor...

Conda allows you to install software into your home directory. In this
case we need the numerical python libraries for calcPiSerial.py

[vanilla@hopper intro workshop]$source activate numpy

[vanilla@hopper intro workshop]$srun --partition debug python
code/calcPiSerial.py 10

srun: Using account 2016199 from ~/.default slurm_account

You have not been allocated GPUs. To request GPUs, use the -G
option in your submission script.

Pi = 3.14242598500109870940, (Diff=0.00083333141130559341)
(calculated 1in 0.000005 secs with 10 steps)

[vanilla@hopper intro workshopl]$ sbatch slurm/calc pi_serial.sh
sbatch: Using account 2016199 from ~/.default slurm _account

Submitted batch job 5263

vanilla@hopper:~/workshops/intro workshop$ squeue --me
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

5263 debug calc pi_ vanilla R 0:44 1 hopper0ll

Parallelism —
Embarrassingly Parallel

* Embarrassingly parallel (Cleve Moler)
are problems that are really really easy
to speed up with mode CPUs.

* The most common example is that you
have a program that runs in serial and
takes some input file, processes it, and
produces some output.

* The problem is that you have 1,000 of
the input files and want to run your
program on each one.

Parallelism —
Embarrassingly Parallel

This is “"embarrassing”
because all you have to do
is run 1,000 copies of your
program on 1,000 CPUs
each with a different input
file and you are done.

SLURM ARRAYS

* One way to run the 1,000 copies of your program on
1,000 different inputs would be to write 1,000 slurm
scripts each specifying a different input to your
program and then sbatch submit them all. (this would
work but there are better ways).

* SLURM arrays are used to schedule a lot of jobs with
one slurm script.

[vanilla@hopper intro workshop]$ nano slurm/calc_pi_array.sh
#!/bin/bash

#SBATCH --partition debug

#SBATCH --ntasks 1

#SBATCH --time 00:05:00

#SBATCH --job-name calc _pi_array

#SBATCH --mail-user your_username@unm.edu
#SBATCH --mail-type ALL

#SBATCH --array=1-12%3

echo "$HOSTNAME - $SLURM_ARRAY TASK ID"

module load miniconda3
source activate numpy

NUM_STEPS="${SLURM_ARRAY TASK ID}0000"
echo "Calculating pi with $NUM_STEPS..."
cd $SLURM SUBMIT DIR

python code/calcPiSerial.py $NUM STEPS

[vanilla@hopper intro workshop]$ nano slurm/calc_pi_array.sh
#!/bin/bash

#SBATCH --partition debug

#SBATCH --ntasks 1

#SBATCH --cpus-per-task 3

#SBATCH --time 00:05:00

#SBATCH --job-name calc _pi_array

#SBATCH --mail-user your_username@unm.edu
#SBATCH --mail-type ALL

#SBATCH --array=1-12%3

echo "$HOSTNAME - $SLURM_ARRAY TASK ID"

module load miniconda3
source activate numpy

NUM_STEPS="${SLURM_ARRAY TASK ID}0000"
echo "Calculating pi with $NUM STEPS..."
cd $SLURM SUBMIT DIR

python code/calcPiSerial.py $NUM STEPS

[vanilla@hopper intro workshopl]$ sbatch slurm/calc pi_array.sh
sbatch: Using account 2016199 from ~/.default slurm_account

Submitted batch job 5263

vanilla@hopper:~/workshops/intro workshop$ watch squeue --me
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

5263 debug calc pi_ vanilla R 0:44 1 hopper0ll

JOB arrays are OK or very simple inputs like programs that take a
single file as input. But even passing in a value takes some
annoying variable manipulation.

GNU Parallel is much more sophisticated it can take inputs in all
sorts of ways. We will look at just 3 ways.

To access GNU parallel enter module load paraliel

Let’s experiment with parallel interactively...

*NOTE: we don’t use srun to run parallel.

GNU Parallel

NU

Has been around for a very long time and has lots and lots of great
features.

But basically it creates a job for every input it receives. The inputs can
be specified in the command, read from a file, or be the output of
another program.

It also remembers which jobs have finished and which still need to be
run. So when you run out of time and resubmit it will automatically
pick up where it left off.

[vanilla@hopper intro workshopl]$ salloc --partition debug --ntasks 2
salloc: Using account 2016199 from ~/.default slurm account

salloc: Granted job allocation 5275

salloc: Waiting for resource configuration

salloc: Nodes hopper0l1ll are ready for job

$ module load parallel
$ parallel python code/calcPiSerial.py ::: 10 20 30 40

Pi = 3.14180098689309428295, (Diff=0.00020833330330116695)
(calculated in 0.000006 secs with 20 steps)
Pi = 3.14164473692265744376, (Diff=0.00005208333286432776)
(calculated in 0.000008 secs with 40 steps)
Pi = 3.14242598500109870940, (Diff=0.00083333141130559341)
(calculated in 0.000006 secs with 10 steps)

Pi = 3.14168524617974842528, (Diff=0.00009259258995530928)
(calculated in 0.000012 secs with 30 steps)

[vanilla@hopper intro workshop]$% seq 10 10 100

10
20
30
40
50
60
AL
30
90
100

[vanilla@hopper intro workshop]$ seq 10 10 100 | parallel python code/calcPiSerial.py
Pi = 3.14180098689309428295, (Diff=0.00020833330330116695) (calculated in 0.000007
secs with 20 steps)

Pi = 3.14242598500109870940, (Diff=0.00083333141130559341) (calculated in 0.000006
secs with 10 steps)

Pi = 3.14168524617974842528, (Diff=0.00009259258995530928) (calculated in 0.000007
secs with 30 steps)

etc

[vanilla@hopper intro workshopl$ find -name *.sh
./slurm/calc_pi_array.sh
./slurm/calc_pi_mpi.sh
./slurm/calc_pi_parallel.sh
./slurm/calc_pi_serial.sh
./slurm/gaussian.sh
./slurm/hostname_mpi.sh

etc

$ find -name *.sh | parallel wc -1
/ ./code/vecadd/vecaddmpi_cpu.sh
19 ./slurm/calc _pi_array.sh

15 ./slurm/calc_pi_mpi.sh

20 ./slurm/calc _pi_parallel.sh

14 ./slurm/calc_pi_serial.sh

16 ./slurm/gaussian.sh

15 ./slurm/hostname_mpi.sh

etc

(numpy)$ seqg 10 10 100 | parallel srun python code/calcPiSerial.py

(numpy)$ seq 10 10 100

You have not been allocated
script.

Pi =
with 20 steps)

srun: Using account 2016199
You have not been allocated
script.

Pi =
with 70 steps)

Pi =
with 100 steps)

3.14180098689309428295,

3.14160966039249744952,

3.14160098692312539370,

| parallel srun python code/calcPiSerial.py

GPUs. To request GPUs, use the

(Diff=0.00020833330330116695)

from ~/.default slurm_account
GPUs. To request GPUs, use the

(Diff=0.000017/00680270433352)

(Diff=0.00000833333333227770)

-G option 1in your submission

(calculated in 0.000015 secs

-G option 1in your submission

(calculated in 0.000029 secs

(calculated in 0.000036 secs

[vanilla@hopper intro _workshop]$ exit
exit
salloc: Relinquishing job allocation 5275

Parallelism — Coupled Parallelism

A7 WP

* Coupled problems are those where
the CPUs need to work together to
solve a problem by communicating
with each other.

* Many commercial and research
programs designed to run on HPC
systems like CARC use a library
called the message passing interface
(MPI) to do this.

e We have written an MPI version of
our python pi calculator to
demonstrate.

Serial Program to Calculate =

1 4+ 2

1
W = —
n
>
s L+ 5)

Parallel Program to Calculate 7T

b
—

PO B

P2/PO|P1(P2|PO| P1|P2|PO

i b

MPI: Message Passing Interface

When programs need to run on many processors but also
communicate with one another.

Here the parallel version of calcPi needs to communicate the
partial sums computed by each process so they can all be added
up.

To communicate we will use the MPI library:

import time
import sys
import numpy as np # Value of Pl to compare to

HitHh#HH# R SETUP MPI - START ##HH#HHHH# R R
from mpidpy import MPI #Import the MPI library

comm = MPL.COMM_WORLD #Communication framework
root=0 #Root process

rank = comm.Get_rank() #Rank of this process

num_procs = comm.Get_size() #Total number of processes
BHERBHAERHE GRS ER RS TR END BREER RS R R R

#Distributed function to calculate pi
def Pi(num_steps):
step = 1.0 / num_steps
sum =0
foriin range(rank, num_steps, num_procs): # Divide sum among
processes
x=(i+0.5) * step
sum=sum+4.0/ (1.0 +x * x)
mypi = step * sum

Get that partial sums from all the processes, add them up, and give
to the root process

pi = comm.reduce(mypi, MP1.SUM, root)

return pi

#Main function
Check that the caller gave us the number of steps to use
if len(sys.argv) != 2:
print("Usage: ", sys.argv[0], " <number of steps>")
sys.exit(1)

num_steps = int(sys.argv[1],10);

#Broadcast number of steps to use to the other processes
comm.bcast(num_steps, root)

Call function to calculate pi

start = time.time() #Start timing

pi = Pi(num_steps) # Call the function that calculates pi
end = time.time() # End timing

If we are the root process then print our estimation of pi,
the difference from numpy's value, and how long it took
print("Pi = %.20f, (Diff=%.20f) (calculated in %f secs with %d
steps)" %(pi, pi-np.pi, end - start, num_steps))

HHHHE R HEH3H SETUP MPI - START #######HEHEHEHEHERH
from mpidpy import MPI #lmport the MPI library

comm = MPI.COMM_WORLD #Communication framework
root=0 #Root process

rank = comm.Get_rank() #Rank of this process

num_procs = comm.Get_size() #Total number of processes
HHHHEHE R #H#EE END ##EHEHERE BB

#Distributed function to calculate pi
def Pi(num_steps):
step = 1.0 / num_steps
sum=0
foriin range(rank, num_steps, num_procs): # Divide sum among processes
x = (i +0.5) * step
sum=sum+4.0/ (1.0 +x * x)
mypi = step * sum

Get that partial sums from all the processes, add them up,
and give to the root process

pi = comm.reduce(mypi, MP1.SUM, root)

return pi

#Main function
<ship>
num_steps = int(sys.argv[1],10);

#Broadcast number of steps to use to the other processes
comm.bcast(num_steps, root)

Call function to calculate pi

start = time.time() #Start timing

pi = Pi(num_steps) # Call the function that calculates pi
end = time.time() # End timing

If we are the root process then print our estimation of pi,

the difference from numpy's value, and how long it took

print("Pi = %.20f, (Diff=%.20f) (calculated in %f secs with %d steps)"
%(pi, pi-np.pi, end - start, num_steps))

#!/bin/bash

#SBATCH --partition debug

#SBATCH --nodes 2

#SBATCH --ntasks-per-node 4

#SBATCH --time 00:05:00

#SBATCH --job-name calc_pi_mpi

#SBATCH --mail-user your_username@unm.edu
#SBATCH --mail-type ALL

module load miniconda3
source activate mpi_numpy

cd SSLURM_SUBMIT_DIR
srun --mpi=pmi2 python code/calcPiMPI.py 1000000000

sbatch slurm/calc_pi_mpi.sh

srun --mpi=pmi2 python code/calcPiMPIl.py 1000000000

srun understands MPI programs!

If you ever used mpirun or mpiexec you had to provide a lot of
parameters to describe how many compute nodes you had and
what their names are, etc.

But srun is part of SLURM so it already knows all that.

The only thing you have to specify is the communication library to
use. In our case “pmi2”.

In Class Experiment

Run calc_pi_mpi.sh.

Vary the number of tasks it uses.
Use squeue to monitor the state of your job,
Look at your output files.

What is the relationship between the number of tasks and
how fast it calculates pi?

Example Code with MPl and CUDA

* Let’s take a look at ~/workshops/intro_workshop/code/vecadd

* The Makefile allows you to compile C code for CPU using MPI or a MPI
and CUDA code.

* First though we have to provide a MPI library

module load openmpi

Example Code with MPl and CUDA

* This code just takes two vectors and corresponding elements together
to create a new array.

* This code is NOT written to be efficient — | tried to write it to make the
relationship between MPI processes clear.

$ cd ~/workshops/intro workshop/code/vecadd
$ module load openmpi

$ cd ~/workshops/intro workshop/code/vecadd

$ module load openmpi
$ cat Makefile

gpu:
nvcc -arch sm 35 -c vecadd gpu.cu -o vecadd gpu.o

mpic++ -c vecadd mpi_gpu.c -0 vecadd mpi_gpu.o
mpic++ vecadd mpi_gpu.o vecadd gpu.o -lcudart -o vecadd mpi_gpu

Cpu:
mpic++ vecadd mpi_cpu.c -0 vecadd mpi_cpu

clean:
rm vecadd mpi_gpu vecadd mpi_cpu vecadd mpi_gpu.o
vecadd mpi _cpu.o vecadd gpu.o

$ cd ~/workshops/intro workshop/code/vecadd

$ module load openmpi
$ cat Makefile

Requires the Xena GPU cluster

mpi_gpu

cpu:
mpic++ vecadd mpi_cpu.c -o vecadd mpi_cpu

clean:
rm vecadd mpi_gpu vecadd mpi_cpu vecadd mpi_gpu.o
vecadd mpi _cpu.o vecadd gpu.o

$ cd ~/workshops/intro workshop/code/vecadd
$ module load openmpi

$ make cpu
mpic++ vecadd mpi _cpu.Cc -0 vecadd mpi_cpu

$ c¢d ~/workshops/intro _workshop/code/vecadd

$ module load openmpi

$ make cpu

mpic++ vecadd mpi_cpu.Cc -0 vecadd mpi_cpu

$ 1s

Makefile vecadd gpu.cu vecadd mpi _cpu vecadd
_mpi1_cpu.c vecaddmpi cpu.sh vecadd mpi _gpu.c

Useful Slurm Commands

squeue --me --long shows information about jobs you submitted
sgueue --me --start shows when slurm expects your job to start
scancel jobid cancels a job

scancel --u SUSER cancels all your jobs

sacct shows your job history

seff jobid shows how efficiently the hardware was used

