
Midterm Exam Distribution

Letter Grade

N
um

be
r o

f S
tu

de
nt

s

Mean: 77, Median: 79

Midterm Cumulative Grade Distribution (30% of Total Points)

Letter Grade

N
um

be
r o

f S
tu

de
nt

s

Mean: 85, Median: 86

Questions most missed

• What does strace do?

Prints the system calls a program makes as it runs. Useful to track
what it’s doing when you don’t have the source code.

• What does a bootloader such as GRUB2 do?

Starts a kernel. (might present the user with a menu of kernel
options to choose from)

Current Assignments

•Homework 4.
•Due Friday before class.

Lecture 14: Warewulf

Installation tools (yum and dnf)

• Dnf is the successor to yum.
• So in my examples why do I use “yum”?

[matthew@moonshine ~]$ ls -l $(which dnf)
lrwxrwxrwx. 1 root root 5 Oct 31 20:53 /usr/bin/dnf -> dnf-3

[matthew@moonshine ~]$ ls -l $(which yum)
lrwxrwxrwx. 1 root root 5 Oct 31 20:53 /usr/bin/yum -> dnf-3

Goal Configuration

eno1
129.24.245.x
TCP/IP

129.24.245.0
Head NodePublic Network

Services:
SLURM
WAREWULF

Goal Configuration

eno1
129.24.245.x
TCP/IP

129.24.245.0

eno2
129.24.245.x
TCP/IP

Head Node

Public IP Network

Services:
SLURM
WAREWULF

192.168.1.0
Private* IP Network

eno1
192.168.2.1
TCP/IP

ibp65s0
RDMA
Infiniband

ibp65s0
RDMA
Infiniband

Compute
Node 1

*Non-routable

Configuring a cluster

• Setup the head node with Linux
• Install the services we need to support the cluster on the head node
• Setup an external network interface that leads to the internet on the

head node
• Setup two internal network interface that leads to the compute nodes

(an ethernet admin network and a Infiniband high speed network)
• Configure a disk image containing Linux that’s stored on the head node.
• Configure the compute node to boot using a disk image it gets from the

head node over the network

Services we need

• Trivial File Transfer service
• This will serve the disk boot image to the compute nodes.

• Network File Server
• After the compute node boots this is how it will access files stored on the head

nodes.
• DHCP

• Provides an initial IP address and network configuration to the compute nodes.

• Warewulf
• The warwulf service provides tools for remote management of the compute

nodes.

Warewulf “provisioning” process. Assigning IP to compute
node.

Head node Compute node

0

Warewulf “provisioning” process. Assigning IP to compute
node.

Head node Compute node

0

1 IP Request

Warewulf “provisioning” process. Assigning IP to compute
node.

Head node Compute node

0

1 IP Request

2 Assign IP

Warewulf “provisioning” process.
Getting boot image.

Head node Compute node

0

Warewulf “provisioning” process.
Getting boot image.

Head node Compute node

0

1

Request disk image

Warewulf “provisioning” process.
Getting boot image.

Head node Compute node

0

1

Request disk image

2
Return Linux image

Warewulf “provisioning” process.
NFS sharing.

Head node Compute node

0

Warewulf “provisioning” process.
NFS sharing.

Head node Compute node

0

1

Request mounts

Warewulf “provisioning” process.
NFS sharing.

Head node Compute node

0

1

Request mounts

2
Mount shares

Configure Internal Network Interface
• Decide who on your team will perform the installations.
• Make sure everyone on the team understands what is going

on.

Configure Internal Network Interface
[root@moonshine warewulf]# nmtui

Configure Internal Admin Network Interface
[root@moonshine warewulf]# nmtui

External Interface IP
for your cluster

Internal Interface IP
/16 means 255.255.0.0

Configure Internal Network Interface

Make sure to
save

Configure Internal Network Interface

We don’t want to use this interface to get to the internet

Configure Internal Network Interface

We do want this interface to come up on boot

Configure Internal Network Interface

Activate the connection

Configure Internal Network Interface

[matthew@moonshine ~]$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default summit.carc.unm 0.0.0.0 UG 100 0 0 eno1
10.0.0.0 0.0.0.0 255.255.0.0 U 101 0 0 eno2
129.24.244.0 0.0.0.0 255.255.252.0 U 100 0 0 eno1
129.24.244.0 0.0.0.0 255.255.252.0 U 100 0 0 eno1

Now we have a route to the internal network (10.0.0.0)

Configure Internal Network Interface

[matthew@moonshine ~]$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default summit.carc.unm 0.0.0.0 UG 100 0 0 eno1
10.0.0.0 0.0.0.0 255.255.0.0 U 101 0 0 eno2
129.24.244.0 0.0.0.0 255.255.252.0 U 100 0 0 eno1
129.24.244.0 0.0.0.0 255.255.252.0 U 100 0 0 eno1

These 0.0.0.0 entries means no gateway address is needed. The
corresponding destination network is connected directly to the
network card.

Configure Internal Network Interface

[matthew@moonshine ~]$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default summit.carc.unm 0.0.0.0 UG 100 0 0 eno1
10.0.0.0 0.0.0.0 255.255.0.0 U 101 0 0 eno2
129.24.244.0 0.0.0.0 255.255.252.0 U 100 0 0 eno1
129.24.244.0 0.0.0.0 255.255.252.0 U 100 0 0 eno1

The default destination with IP mask 0.0.0.0 matches all IP addresses.

When deciding which interface to use to get to a destination, the genmask with
the most networks are chosen first, then if there is a tie the metric value is used.

So, 0.0.0.0 is always matched last and 255.255.255.255 would always match
first. 255.255.0.0 beats 0.0.0.0 so packets are sent to eno2 if the destination is
10.0.0.0 even though 0.0.0.0 also matches.

Warewulf Installation

• Decide who on your team will perform the
installations.

• Make sure everyone on the team understands what is
going on.

[matthew@moonshine ~]$ sudo yum groupinstall "Development Tools"
[sudo] password for matthew:
Last metadata expiration check: 0:14:04 ago on Tue 19 Mar 2024 07:53:26 PM CDT.
Dependencies resolved
<snip>
Complete!

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install epel-release

[matthew@moonshine ~]$ sudo yum config-manager --set-enabled crb

Enable the Code Builder
repository. This is a
repository of tools
developed by RedHat
employees.

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server
nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server
nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

golang: programming language
developed by Google

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server
nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

TFTP: trivial file transfer protocol server

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server
nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

DHCP: dynamic host configuration protocol server

(Review DHCP from the Networking lecture)

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server

nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

NFS: Network File System server

(Review NFS from Filesystems lecture)

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server

nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

GPG: GNU Privacy Guard (Encryption)

Devel after a package name means the package provides
headers for developers to use.

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server

nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

Assuan: Package that allows processes to talk to one
another through GPG (it’s purpose is to prevent front end
server developers from accidently exposing encrypted
data)

Warewulf Installation

[matthew@moonshine ~]$ sudo yum install golang tftp-server dhcp-server

nfs-utils gpgme-devel libassuan-devel ipxe-bootimgs

ipxe boot images: Provides some standard PXE
bootloaders

Warewulf Installation

[matthew@moonshine ~]$ sudo -i
[root@moonshine ~]# git clone https://github.com/hpcng/warewulf.git
Cloning into 'warewulf'...
remote: Enumerating objects: 18703, done.
remote: Counting objects: 100% (659/659), done.
remote: Compressing objects: 100% (356/356), done.
remote: Total 18703 (delta 341), reused 521 (delta 278), pack-reused 18044
Receiving objects: 100% (18703/18703), 24.07 MiB | 4.90 MiB/s, done.
Resolving deltas: 100% (10004/10004), done.

HPCng: High Performance Computing Next Generation is an
open community of people and organizations interested in the
broad modernization of HPC capabilities.

Warewulf Installation

[matthew@moonshine ~]$ sudo -i
[root@moonshine ~]# git clone https://github.com/hpcng/warewulf.git
Cloning into 'warewulf'...
remote: Enumerating objects: 18703, done.
remote: Counting objects: 100% (659/659), done.
remote: Compressing objects: 100% (356/356), done.
remote: Total 18703 (delta 341), reused 521 (delta 278), pack-reused 18044
Receiving objects: 100% (18703/18703), 24.07 MiB | 4.90 MiB/s, done.
Resolving deltas: 100% (10004/10004), done.

HPCng: High Performance Computing Next Generation is an
open community of people and organizations interested in the
broad modernization of HPC capabilities.

Interactive sudo.

Warewulf Installation
[root@moonshine ~]# cd warewulf
[root@moonshine warewulf]# make clean defaults \
PREFIX=/usr \
BINDIR=/usr/bin \
SYSCONFDIR=/etc \
DATADIR=/usr/share \
LOCALSTATEDIR=/var/lib \
SHAREDSTATEDIR=/var/lib \
MANDIR=/usr/share/man \
INFODIR=/usr/share/info \
DOCDIR=/usr/share/doc \
SRVDIR=/var/lib \
TFTPDIR=/var/lib/tftpboot \
SYSTEMDDIR=/usr/lib/systemd/system \
BASHCOMPDIR=/etc/bash_completion.d/ \
FIREWALLDDIR=/usr/lib/firewalld/services \
WWCLIENTDIR=/warewulf

Warewulf Installation
[matthew@moonshine warewulf]$ make all

[matthew@moonshine warewulf]$ make install

Configure Warewulf – it will configure the other services
for us
[root@moonshine warewulf]# less /etc/warewulf/warewulf.conf

dhpcd will be configured to serve IP addresses on the
interface that matches the first IP in the range.
10.0.0.1/16 matches 10.0.1.1

dhcp:
enabled: true
template: default
range start: 10.0.1.1
range end: 10.0.1.255
systemd name: dhcpd

When a compute node
asks for an IP the DHCP
server will reply with one
from this range

Configure Warewulf – it will configure the other services
for us
[root@moonshine warewulf]# less /etc/warewulf/warewulf.conf

The compute node will use the PXE network boot protocol
to boot off the disk image. PXE boot is built into HPC
network card firmware and the UEFI BIOS.

tftp:
enabled: true
tftproot: /var/lib/tftpboot
systemd name: tftp
ipxe:
"00:00": undionly.kpxe
"00:07": ipxe-snponly-x86_64.efi
"00:09": ipxe-snponly-x86_64.efi
00:0B: arm64-efi/snponly.efi

Where disk images will be
stored on the head node.

Some efi boot loader
images.

An MBR bootloader image.

Configure Warewulf – it will configure the other services
for us
[root@moonshine warewulf]# less /etc/warewulf/warewulf.conf

NFS server options. This is where “optional” software is installed.

nfs:
enabled: true
export paths:
- path: /home
export options: rw,sync
mount options: defaults
mount: true

- path: /opt
export options: ro,sync,no_root_squash
mount options: defaults
mount: false

systemd name: nfs-server

The ”home” and “opt*” directories will
be exported over the network to the
compute nodes.

Enable Systemd Warewulf unit so it starts on boot

[root@moonshine warewulf]# systemctl enable --now warewulfd
Created symlink /etc/systemd/system/multi-user.target.wants/warewulfd.service →
/usr/lib/systemd/system/warewulfd.service.

The –-now argument says start the daemon too

Check for startup errors
[root@moonshine warewulf]# systemctl status warewulfd
● warewulfd.service - Warewulf cluster management daemon

Loaded: loaded (/usr/lib/systemd/system/warewulfd.service; enabled; preset: disabled)
Active: active (running) since Wed 2024-03-20 00:01:05 CDT; 2min 50s ago

Docs: https://warewulf.org/
Main PID: 212040 (wwctl)

Tasks: 11 (limit: 407887)
Memory: 39.8M

CPU: 59ms
CGroup: /system.slice/warewulfd.service

└─212040 /usr/bin/wwctl server start

Mar 20 00:01:05 moonshine systemd[1]: Started Warewulf cluster management daemon.
Mar 20 00:01:05 moonshine wwctl[212029]: SERV : Started Warewulf (4.5.x-1.git_2805122c)
server at PID: 212040

Warewulf will now configure the other services for us

[root@moonshine warewulf]# wwctl configure dhcp
Building overlay for moonshine: host
Enabling and restarting the DHCP services
Created symlink /etc/systemd/system/multi-user.target.wants/dhcpd.service
→ /usr/lib/systemd/system/dhcpd.service.

Warewulf will now configure the other services for us
[root@moonshine warewulf]# systemctl status dhcpd
● dhcpd.service - DHCPv4 Server Daemon

Loaded: loaded (/usr/lib/systemd/system/dhcpd.service; enabled; preset: disabled)
Active: active (running) since Wed 2024-03-20 00:06:10 CDT; 43s ago
Docs: man:dhcpd(8)

man:dhcpd.conf(5)
Main PID: 212079 (dhcpd)
Status: "Dispatching packets..."
Tasks: 1 (limit: 407887)
Memory: 10.2M

CPU: 16ms
CGroup: /system.slice/dhcpd.service

└─212079 /usr/sbin/dhcpd -f -cf /etc/dhcp/dhcpd.conf -user dhcpd -group dhcpd --no-pid

Mar 20 00:06:10 moonshine dhcpd[212079]:
Mar 20 00:06:10 moonshine dhcpd[212079]: No subnet declaration for eno1 (129.24.245.8).
Mar 20 00:06:10 moonshine dhcpd[212079]: ** Ignoring requests on eno1. If this is not what
Mar 20 00:06:10 moonshine dhcpd[212079]: you want, please write a subnet declaration
Mar 20 00:06:10 moonshine dhcpd[212079]: in your dhcpd.conf file for the network segment
Mar 20 00:06:10 moonshine dhcpd[212079]: to which interface eno1 is attached. **
Mar 20 00:06:10 moonshine dhcpd[212079]:
Mar 20 00:06:10 moonshine dhcpd[212079]: Sending on Socket/fallback/fallback-net
Mar 20 00:06:10 moonshine dhcpd[212079]: Server starting service.
Mar 20 00:06:10 moonshine systemd[1]: Started DHCPv4 Server Daemon.

Why not? And Why is this
good?

Warewulf will now configure the other services for us
[root@moonshine warewulf]# wwctl configure tftp
Writing PXE files to: /var/lib/tftpboot/warewulf
ERROR : Could not open source file /usr/share/ipxe/arm64-efi/snponly.efi: open
/usr/share/ipxe/arm64-efi/snponly.efi: no such file or directory
WARN : ipxe binary could not be copied, booting may not work: open
/usr/share/ipxe/arm64-efi/snponly.efi: no such file or directory
Enabling and restarting the TFTP services

This copies the bootloaders that PXE boot will use (they came from
installing pxe-bootimgs). We don’t care that the ARM processor
bootloaders are missing.

Warewulf will now configure the other services for us
[root@moonshine warewulf]# wwctl configure nfs
Building overlay for moonshine: host
Enabling and restarting the NFS services
Created symlink /etc/systemd/system/multi-user.target.wants/nfs-server.service →
/usr/lib/systemd/system/nfs-server.service.

Warewulf will now configure the other services for us
[root@moonshine warewulf]# systemctl status nfs-server
● nfs-server.service - NFS server and services

Loaded: loaded (/usr/lib/systemd/system/nfs-server.service; enabled; preset:
disabled)

Drop-In: /run/systemd/generator/nfs-server.service.d
└─order-with-mounts.conf

Active: active (exited) since Wed 2024-03-20 00:16:39 CDT; 47s ago
Main PID: 212194 (code=exited, status=0/SUCCESS)

CPU: 24ms

Mar 20 00:16:38 moonshine systemd[1]: Starting NFS server and services...
Mar 20 00:16:39 moonshine systemd[1]: Finished NFS server and services.

Check that the nfs-server is exporting the desired directories
[root@moonshine warewulf]# cat /etc/exports

This file is autogenerated by warewulf
Host: moonshine
Time: 03-20-2024 00:16:38 CDT
Source: /var/lib/warewulf/overlays/host/rootfs/etc/exports.ww
/home 10.0.0.0/255.255.252.0(rw,sync)
/opt 10.0.0.0/255.255.252.0(ro,sync,no_root_squash)

The /opt and /home directories are being shared and can be accessed by machines with IP addresses from the
10.0.0.0/24 subnet.

Hmm this is a problem! Our DHCP range was 10.0.1.0 - 10.0.1.255.

We are accumulating a lot of IP addresses here! It’s getting confusing.

Warewulf “provisioning” process. Assigning IP to compute
node.

Head node Compute node

0

Revisited

Warewulf “provisioning” process. Assigning IP to compute
node.

Head node Compute node

0

1 IP Request

Warewulf “provisioning” process. Assigning IP to compute
node.

Head node Compute node

0

1 IP Request

2 Assign IP

Warewulf “provisioning” process.
Getting boot image.

Head node Compute node

0

Warewulf “provisioning” process.
Getting boot image.

Head node Compute node

0

1

Request disk image

Warewulf “provisioning” process.
Getting boot image.

Head node Compute node

0

1

Request disk image

2
Return Linux image

Warewulf “provisioning” process.
NFS sharing.

Head node Compute node

0

Warewulf “provisioning” process.
NFS sharing.

Head node Compute node

0

1

Request mounts

Warewulf “provisioning” process.
NFS sharing.

Head node Compute node

0

1

Request mounts

2
Mount shares

Configure ssh keys for the cluster so services and users can access
compute nodes without having to enter a password.

[root@moonshine warewulf]# wwctl configure ssh
Updating system keys
Setting up key: ssh_host_rsa_key
Setting up key: ssh_host_dsa_key
Setting up key: ssh_host_ecdsa_key
Setting up key: ssh_host_ed25519_key
Setting up: /root/.ssh/authorized_keys
[root@moonshine warewulf]#

[root@moonshine ~]# cat /root/.ssh/authorized_keys
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABgQC3dqNIErTAMN8+nT4ejn3OTnltq7sc+BqJpvmpgw3+o7KUnbPMJU
MpyZeqvrGlC6pT0MX7Wogd0Iszcsv6G2oyafnRJA4Q4gmRxGiQaIAG9kDpTczfsGYdcEDZEOgXN1rwTn4/
rGUZcL9bS2YlXg94rDKDhEjM5VbfYLmE4UQnAMeppyoe4vPxuxzbb5wLiCkigmFd7bQXauH9j7/HbtdcFm
TOyQoyRA7usYXr/ervFfSPCsRbzIw+Yv9872ALFqVGA209xqM8iNz7jUY1EsgUerL5hMWDqqjYvJC2Umdy
IxnuFUl50T6KpXOAG+oKHbOhCReIm4MM/vOus0GR4XjcswDejfHzMNTQWmpSGFPhrzIU3Jj24wfDap3Srl
s0fnTPFMlolFsVkv8HIP1Wl46n2vgkRpEEXbSqCd+9v5Mj5SOo/7k9WhKQ4REEWOaVgJ0fN6gDxy6J0bkB
lVnyd/Lw5FHDK5Vz75Ht9jB8QngoulZB9N9KnjQdkLCPN+zIpkE=

Download a Rocky 9 Linux Boot Image
[root@moonshine ~]# wwctl container import docker://ghcr.io/hpcng/warewulf-rockylinux:9 rocky-9
Copying blob 489e1be6ce56 done
Copying blob 280c15a49d01 done
Copying blob 39f01640b517 done
Copying blob 99b4942e1205 done
Copying config 46aa9f0cce done
Writing manifest to image destination
Storing signatures
2024/03/20 00:31:37 info unpack layer:
sha256:489e1be6ce56f590a5a31bdf814671cac006421930c1175cb62e1763bf51a3f9
2024/03/20 00:31:40 info unpack layer:
sha256:280c15a49d01a6159a231e325ada76e79d9d972bd128bb0abe4d8b80bba4fbb5
2024/03/20 00:31:50 info unpack layer:
sha256:39f01640b5175b07c8525a1dbfe980293b64b39ad7a76c146d5f189ba9f830b3
2024/03/20 00:31:50 info unpack layer:
sha256:99b4942e1205be66808b8588de5f81b1a46957d85c51101972f01bfed05e66cd
uid/gid not synced: run `wwctl container syncuser --write rocky-9`

Containers are whole filesystems and possibly Linux installations stored in a single file.
With Docker you can run these operating systems on top of the host operating system.
For now we are just using it as a file from which our compute node will boot using PXE.

We can modify this boot image – for example we can write the
headnode’s user information into the image so when the compute node
boots from the image it knows about the users already.

[root@moonshine ~]# wwctl container syncuser --write rocky-9 --build
uid/gid synced for container rocky-9
Created image for VNFS container rocky-9:
/var/lib/warewulf/provision/container/rocky-9.img
Compressed image for VNFS container rocky-9:
/var/lib/warewulf/provision/container/rocky-9.img.gz

Now we set the “default” warewulf compute node profile to use the Rocky
9 image we created.

[root@moonshine ~]# wwctl profile set --yes --container rocky-9 "default”

Print the warewulf profile to make sure the Container Name is set correctly.

[root@moonshine ~]# sudo wwctl profile list -a
PROFILE FIELD VALUE
default Id default
default Comment This profile is automatically included for each node
default ContainerName rocky-9

Disable selinux and reboot.

• Now we are ready to move on from a single server to building a
cluster.
• We will start by building a cluster with just two nodes, a head node

(which you have already configured) and a compute node.
• The tools we use here could just as well be used to build a cluster

with 1000 compute nodes.

Setting up a Compute Node

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Setup IP routing on the head node so the compute
node can use it to reach the internet.
1) Enable Kernel IP routing
[matthew@moonshine ~]$ cat /proc/sys/net/ipv4/ip_forward
0
[matthew@moonshine ~]$ sudo sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
[matthew@moonshine ~]$

This zero means the
kernel doesn’t allow
packets that arrive on
one interface to leave
on another.

sysctl is a tool for modifying kernel settings

Setup IP routing on the head node so the compute
node can use it to reach the internet.
1) Enable Kernel IP routing
[matthew@moonshine ~]$ cat /proc/sys/net/ipv4/ip_forward
0
[matthew@moonshine ~]$ sudo sysctl -w net.ipv4.ip_forward=1
net.ipv4.ip_forward = 1
[matthew@moonshine ~]$

We enable that
capability so our
compute node can use
this head node as an IP
gateway.

Setup IP routing on the head node so the compute
node can use it to reach the internet.
1) Enable Kernel IP routing

Edit /etc/sysctl.conf

Add this line to make
turning on IP forwarding
permanent.

Setup IP routing on the head node so the compute
node can use it to reach the internet.
1) Enable Kernel IP routing
[matthew@moonshine ~]$ sudo sysctl -p
net.ipv4.ip_forward = 1

Apply the contents of
/etc/sysctl.conf
immediately.

Setup IP routing on the head node so the compute
node can use it to reach the internet.
2) Setup firewall rules
[matthew@moonshine ~]$ sudo firewall-cmd --zone=external --add-interface=eno1 --permanent
The interface is under control of NetworkManager, setting zone to 'external'.
Success
[matthew@moonshine ~]$ sudo firewall-cmd --zone=internal --add-interface=eno2 --permanent
The interface is under control of NetworkManager, setting zone to 'external'.
Success

Add firewall zones. An external one for the internet facing network interface (eno1) and an
internal one for the compute node network interface (eno2).

Setup IP routing on the head node so the compute
node can use it to reach the internet.
2) Setup firewall rules
[matthew@moonshine ~]$ sudo firewall-cmd --zone=external --add-interface=eno1 --permanent
The interface is under control of NetworkManager, setting zone to 'external'.
Success
[matthew@moonshine ~]$ sudo firewall-cmd --zone=internal --add-interface=eno2 --permanent
The interface is under control of NetworkManager, setting zone to ‘internal'.
Success
[matthew@moonshine ~]$ sudo firewall-cmd --set-default-zone=external
Success

Add firewall zones. An external one for the internet facing network interface (eno1) and an
internal one for the compute node network interface (eno2).

Make the external interface the default firewall zone (all connections not in a zone use the
external zone rules – they should be restrictive)

Setup IP routing on the head node so the compute
node can use it to reach the internet.
2) Setup firewall rules
[matthew@moonshine ~]$ sudo firewall-cmd --new-policy internal-external --permanent
success
[matthew@moonshine ~]$ sudo firewall-cmd --policy internal-external --add-ingress-zone=internal --permanent
success
[matthew@moonshine ~]$ sudo firewall-cmd --policy internal-external --add-egress-zone=external --permanent
success
[matthew@moonshine ~]$ sudo firewall-cmd --policy internal-external --set-target=ACCEPT --permanent
success

Setup a routing policy so the firewall can send packets from the internal zone to the
internal zone and vice versa.

ACCEPT tells the firewall daemon to accept packets

Setup IP routing on the head node so the compute
node can use it to reach the internet.
2) Setup firewall rules
[matthew@moonshine ~]$ sudo firewall-cmd --info-zone external
external (active)
target: default
icmp-block-inversion: no
interfaces: eno1
sources:
services: ssh
ports:
protocols:
forward: yes
masquerade: yes
forward-ports:
source-ports:
icmp-blocks:
rich rules:

What did those commands actually do? They enabled something called IP
Network Address Translation (NAT) Masquerading.

This is what makes private IP addresses so useful. NAT makes it so a single
public IP address can pretend to be the address of thousands of computers
with private addresses.

The firewall keeps track of which internal IP addresses were talking to
computers on the external networks (including the internet – that way those
external computers can reply to computers on the internal network)

This is how you can have multiple devices on your home network for example.

Since we are dealing with the firewall lets set the internal
zone to allow the warewulf services we installed to send
and receive data.

[matthew@moonshine ~]$ sudo firewall-cmd --zone internal --add-service warewulf --permanent
success
[matthew@moonshine ~]$ sudo firewall-cmd --zone internal --add-service nfs --permanent
success
[matthew@moonshine ~]$ sudo firewall-cmd --zone internal --add-service tftp --permanent
success
[matthew@moonshine ~]$ sudo firewall-cmd –reload
success

Add firewall exceptions

[root@moonshine warewulf]# firewall-cmd --list-all --zone internal
internal (active)
target: default
icmp-block-inversion: no
interfaces: eno2
sources:
services: cockpit dhcp dhcpv6-client mdns nfs samba-client ssh tftp warewulf
ports:
protocols:
forward: yes
masquerade: no
forward-ports:
source-ports:
icmp-blocks:
rich rules:

Check that the services are allowed by the firewall
daemon on the internal zone.

Wipe your Compute Nodes Harddrive

Make triple sure this is the Compute node’s iDRAC not the Head node!!!

Wipe your Compute Nodes Harddrive

Make triple sure this is the Compute node’s iDRAC not the Head node!!!

iDRAC adds the initialization request to a job queue.
It doesn’t happen until you reboot the node.

Configure the node to try PXE boot as the first boot option.

Uncheck this little box to
make the change stick

Restart your node… once it boots it reports that it is applying changes.

notice at this stage the IP address assigned to PXE is from the DHCP pool

And that the compute node trying to load from your head nodes internal IP
address.

So far so good, but we haven’t added this node to warewulf yet – so it doesn’t get
configured.

Make a note of your node’s MAC address (yours will be different). We will need it to
add the node to warewulf.

You can also find the MAC address here

Warewulf Node Settings – Default Config

[matthew@moonshine ~]$ sudo wwctl profile set --yes --netdev eno1 --netmask
255.255.0.0 --gateway 10.0.0.1 "default"

These are the settings that will be applied to all
compute nodes. (I know, you only have one)

All nodes will use interface eno1, the address of the
head node’s internal interface as their gateway to
other networks (10.0.0.1), and a subnet mask of
255.255.0.0

Warewulf Node Settings – Specific Node Config

[matthew@moonshine ~]$ sudo wwctl node add --hwaddr D4:AE:52:8B:72:8C --
ipaddr 10.0.0.2 moonshine01
Added node: moonshine01

Now we setup a profile for a particular node.

The node is identified by its MAC address (this is the
address you noted previously).

We give it a name. Name yours with the cluster name
followed by 01.

Warewulf Node Settings – Specific Node Config

[matthew@moonshine ~]$ sudo wwctl node add --hwaddr D4:AE:52:8B:72:8C
--ipaddr 10.0.0.2 moonshine01
Added node: moonshine01

The IP address, MAC address, and node name are the only
things that will vary from node to node.

We are setting the node name and IP address. We are
matching the MAC address.

• If you made a mistake you can delete the node with

wwctl node delete {node name}

Warewulf Node Settings – Specific Node Config

[matthew@moonshine warewulf]$ cat /etc/warewulf/nodes.conf
WW_INTERNAL: 45
nodeprofiles:

default:
comment: This profile is automatically included for each node
container name: rocky-9
network devices:

default:
device: eno1
netmask: 255.255.0.0
gateway: 10.0.0.1

nodes:
moonshine01:

profiles:
- default
network devices:

default:
hwaddr: d4:ae:52:8b:72:8c
ipaddr: 10.0.0.2

These commands populate a text file (as with most configs in Linux)

Warewulf Node Settings – Specific Node Config

[matthew@moonshine warewulf]$ cat /etc/warewulf/nodes.conf
WW_INTERNAL: 45
nodeprofiles:

default:
comment: This profile is automatically included for each node
container name: rocky-9
network devices:

default:
device: eno1
netmask: 255.255.0.0
gateway: 10.0.0.1

nodes:
moonshine01:

profiles:
- default
network devices:

default:
hwaddr: d4:ae:52:8b:72:8c
ipaddr: 10.0.0.2

Notice we added this to the default profile back when we built the boot image.

Modify the Warewulf boot image

As an example, we install the passwd program and use it
to set the root password in the image.

wwctl container exec rocky-9 /bin/bash

passwd root

exit

Build the Warewulf boot image overlays

Containers are flexible because you can add layers of
configuration.

The runtime layer gets reapplied every couple of minutes.
You can use it to make configuration changes that will be
picked up by all the compute nodes.

wwctl overlay build

Check the node settings…
[matthew@moonshine warewulf]$ wwctl node list -a
NODE FIELD PROFILE VALUE
moonshine01 Id -- moonshine01
moonshine01 Comment default This profile is automatically included for each node
moonshine01 ContainerName default rocky-9
moonshine01 Ipxe -- (default)
moonshine01 RuntimeOverlay -- (generic)
moonshine01 SystemOverlay -- (wwinit)
moonshine01 Root -- (initramfs)
moonshine01 Init -- (/sbin/init)
moonshine01 Kernel.Args -- (quiet crashkernel=no vga=791 net.naming-scheme=v238)
moonshine01 Profiles -- default
moonshine01 PrimaryNetDev -- (default)
moonshine01 NetDevs[default].Type -- (ethernet)
moonshine01 NetDevs[default].OnBoot -- (true)
moonshine01 NetDevs[default].Device default eno1
moonshine01 NetDevs[default].Hwaddr -- d4:ae:52:8b:72:8c
moonshine01 NetDevs[default].Ipaddr -- 10.0.0.2
moonshine01 NetDevs[default].Netmask default 255.255.0.0
moonshine01 NetDevs[default].Gateway default 10.0.0.1
moonshine01 NetDevs[default].Primary -- (true)

[matthew@moonshine warewulf]$

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Setting up a Compute Node
Our tasks are:
• Setup IP routing on the head node so the compute node can use it to

reach the internet.
• Wipe the Compute Node’s harddrive. (We want to boot from the

filesystem image stored on the head node – not the compute node’s
internal harddrive)
• Set the Compute Node to boot using PXE.
• Get the MAC address of the Compute Node’s ethernet network card (so

we know which compute node is ours)
• Configure the Warewulf settings for our compute node.
• Modify the Compute Node filesystem image and rebuild it.
• Boot the Compute Node over the network, login, and test the network.

Try rebooting the Compute Node

Try Booting the Compute Node

Try Booting the Compute Node

Try logging in over SSH
[matthew@moonshine ~]$ sudo -i
[sudo] password for matthew:

[root@moonshine ~]# ssh moonshine01
Last login: Mon Mar 25 08:15:51 2024 from 10.0.0.1

[root@moonshine01 ~]# ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=56 time=8.87 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=56 time=9.20 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=56 time=8.88 ms
^C
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 8.865/8.981/9.204/0.157 ms
[root@moonshine01 ~]#

Modifying Overlays

• We will add DNS nameservers to our Compute Node so we can
use friendly host names

• First we will remove the warewulf template file (seems to be
broken)
• Then import our own resolve.conf file into the wwinit overlay

• Then reboot the compute node so it picks up the change

[root@moonshine etc]# cd /var/lib/warewulf/overlays/wwinit/rootfs/etc

[root@moonshine etc]# mv resolv.conf.ww resolve.conf.ww.backup

[root@moonshine etc]# wwctl overlay import wwinit /etc/resolv.conf
Building overlay for moonshine01: [wwinit]
Created image for overlay moonshine01/[wwinit]:
/var/lib/warewulf/provision/overlays/moonshine01/wwinit.img
Compressed image for overlay moonshine01/[wwinit]:
/var/lib/warewulf/provision/overlays/moonshine01/wwinit.img.gz

Setup DNS with Warewulf Overlay

Setup DNS with Warewulf Overlay
[root@moonshine etc]# ssh moonshine01
Last login: Mon Mar 25 09:50:25 2024 from 10.0.0.1
[root@moonshine01 ~]# reboot
[root@moonshine01 ~]# Connection to moonshine01 closed by remote host.
Connection to moonshine01 closed.

[root@moonshine etc]# ping moonshine01
From moonshine (10.0.0.1) icmp_seq=133 Destination Host Unreachable
From moonshine (10.0.0.1) icmp_seq=134 Destination Host Unreachable
From moonshine (10.0.0.1) icmp_seq=135 Destination Host Unreachable
From moonshine (10.0.0.1) icmp_seq=136 Destination Host Unreachable
From moonshine (10.0.0.1) icmp_seq=137 Destination Host Unreachable
<a couple of minutes later>
64 bytes from moonshine01 (10.0.0.2): icmp_seq=138 ttl=64 time=183 ms
64 bytes from moonshine01 (10.0.0.2): icmp_seq=139 ttl=64 time=0.217 ms
64 bytes from moonshine01 (10.0.0.2): icmp_seq=140 ttl=64 time=0.270 ms
64 bytes from moonshine01 (10.0.0.2): icmp_seq=141 ttl=64 time=0.197 ms

[root@moonshine ~]# ssh moonshine01
[root@moonshine01 ~]# cat /etc/resolv.conf
Generated by NetworkManager
search hpc.unm.edu
nameserver 129.24.246.110
nameserver 129.24.246.118
[root@moonshine01 ~]# ping google.com
PING google.com (142.250.191.238) 56(84) bytes of data.
64 bytes from ord38s32-in-f14.1e100.net (142.250.191.238): icmp_seq=1 ttl=56
time=30.9 ms
64 bytes from ord38s32-in-f14.1e100.net (142.250.191.238): icmp_seq=2 ttl=56
time=30.8 ms
64 bytes from ord38s32-in-f14.1e100.net (142.250.191.238): icmp_seq=3 ttl=56
time=30.9 ms
64 bytes from ord38s32-in-f14.1e100.net (142.250.191.238): icmp_seq=4 ttl=56
time=31.0 ms

Setup DNS with Warewulf Overlay

Next

• Installing SLURM on our Cluster

