
Current Assignments

•Homework 3 is live as of Monday night.
• Due at 9:00am Tuesday (so Nick and I can sleep)
•Make sure you take advantage of our office hours!

• I anticipate this homework will take longer. Not harder but more.
• I expect you are able to create plots just like in Homework 2. If you had 

trouble with that, please come see us so the issue doesn’t snowball.

7 /22 students have started the homework.



Lecture 12: Shared 
Memory Parallelism (SMP)



Two Levels of Parallelism
• Shared-memory architecture : these parallel 

machines consist of processors which have access 
to a common memory. (Multiple execution 
threads in the same memory space)

• Distributed-memory architecture : in these 
parallel machines each processor has its own 
private memory and information is interchanged 
between the processors through messages.

• These approaches are often used together. 

Shared Memory Parallelism

Distributed Parallelism



Threads
•A thread is a basic unit of CPU utilization, 
consisting of a program counter, a stack, 
and a set of registers,  and a thread ID. 

•Process: processes have a single thread 
of control - There is one program 
counter, and one sequence of 
instructions that can be carried out at 
any given time.

•In Linux a multi-threaded program has 
several program counters, stacks, and 
registers that all have access to the same 
address space. 

•Remember that the Kernel can allow 
different processes to access the same 
address space.

When you have multiple compute 
cores you can distribute the 
threads among them.



Open Multi-Processing Initiative
• In 1996 the Accelerated Strategic Computing Initiative 

(ASCI)* identified that parallel programming needed a 
simple programming interface that worked for all 
computers.
• That’s the same year ASCI Red was deployed at Sandia 

National Labs.
• Mary Zosel at Lawrence Livermore Labs told DEC, IBM, 

Intel, and the other big companies that the government 
would only buy systems that supported a common, 
simple, “lean and mean”, SMP API for C and FORTRAN. 
• The result was OpenMP.

*ASCI is part of the Department of Energy (DOE) – think big national labs (https://www.osti.gov/servlets/purl/1465188)

Mary Zosel, LLNL/ASCI

ASCI Red 1996 ($140 million)



OpenMP – Example Code

• Guiding Philosophy: Portable and Simple

• Portability was achieved by forcing the big hardware and 
software vendors to support it.
• Simplicity comes from making OpenMP code as close as 

possible to the serial version.
• This means the syntax is to wrap existing code with 

OpenMP pragmas

Mary Zosel, LLNL/ASCI



Helloworld 
example in C

This is a serial hello world 
program

Since this is a serial program 
there is only one thread of 
execution (np) with ID 0 (id).

From Gropp’s CS598 
Exascale Course

From Gropp’s CS598 
Exascale Course



Helloworld 
example in C
To create multiple threads of 
execution with OpenMP we just 
annotate the code.

Here we create 4 threads.

After the omp parallel pragma 
the code is executed by each of 
the 4 threads in the same 
memory space.

Variables declared outside the 
omp parallel pragma are shared 
by all threads. 

Those declared inside are 
private.

 
From Gropp’s CS598 
Exascale Course



FORTRAN SMP Example with OpenMP

Clone this repository:

https://github.com/gmfricke/FORTRAN_SMP



! Program to add up elements of two arrays
program serial_array_sum
 USE OMP_LIB
 implicit none

 INTEGER :: N,i
 CHARACTER(LEN=100) :: arg
 REAL, ALLOCATABLE :: a(:), b(:), c(:)

 call GET_COMMAND_ARGUMENT(1, arg)
 read(arg,*) N
 ALLOCATE(a(N))
 ALLOCATE(b(N))
 ALLOCATE(c(N))

 call RANDOM_NUMBER(b)
 call RANDOM_NUMBER(c)

 do i=1,N
  a(i) = b(i) + c(i)
 end do

end program serial_array_sum

serial_vecadd.f90



! Program to add up elements of two arrays
program serial_array_sum
 USE OMP_LIB
 implicit none

 INTEGER :: N,i
 CHARACTER(LEN=100) :: arg
 REAL, ALLOCATABLE :: a(:), b(:), c(:)

 call GET_COMMAND_ARGUMENT(1, arg)
 read(arg,*) N
 ALLOCATE(a(N))
 ALLOCATE(b(N))
 ALLOCATE(c(N))

 call RANDOM_NUMBER(b)
 call RANDOM_NUMBER(c)

 do i=1,N
  a(i) = b(i) + c(i)
 end do

end program serial_array_sum



smp_vecadd.f90





All variables declared before the 
OMP Parallel pragma are shared 
by all threads.

We tell OpenMP that the loop 
iterator should not be shared. 

We need each thread to track 
which part of the loop it is 
responsible for – so each thread 
needs its own private copy of i 



[matthew@moonshine FORTRAN_SMP]$ gfortran serial_vecadd.f90 -o serial_vecadd

[matthew@moonshine FORTRAN_SMP]$ gfortran -fopenmp smp_vecadd.f90 -o smp_vecadd



OpenMP Parameters

• OpenMP parameters are often provided by setting shell environment 
variables. 
• Environment variables are used for all sorts of things in Linux.

• Run the “env” command to see a list of environment variables you 
have set right now.



[matthew@moonshine FORTRAN_SMP]$ env | head -n 10
SHELL=/bin/bash
HISTCONTROL=ignoredups
HISTSIZE=1000
HOSTNAME=moonshine
PWD=/home/matthew/FORTRAN_SMP
LOGNAME=matthew
XDG_SESSION_TYPE=tty
MOTD_SHOWN=pam
HOME=/home/matthew
LANG=en_US.UTF-8



[matthew@moonshine FORTRAN_SMP]$ env | grep PATH
PATH=/home/matthew/.local/bin:/home/matthew/bin:/usr/local/bin
:/usr/bin:/usr/local/sbin:/usr/sbin



Time command

• Real is wall clock time - time from start to finish of the call. This is all 
elapsed time including time slices used by other processes and time 
the process spends blocked (for example if it is waiting for I/O to 
complete).
• User is the amount of CPU time spent in user-mode code (outside the 

kernel) within the process. This is only actual CPU time used in 
executing the process. Other processes and time the process spends 
blocked do not count towards this figure.
• Sys is the amount of CPU time spent in the kernel within the process. 

This means executing CPU time spent in system calls within the 
kernel.



[matthew@moonshine Fortran_SMP]$ time ./serial_vecadd 1000000000

real 0m10.259s
user 0m7.993s
sys 0m2.238s
[matthew@moonshine Fortran_SMP]$ time OMP_NUM_THREADS=8 ./smp_vecadd 1000000000

real 0m7.460s
user 0m10.906s
sys 0m3.038s To set an environment variable for the whole shell 

we can write:

export OMP_NUM_THREADS=4

To set it for just the process we will execute we can 
write

OMP_NUM_THREADS=4 ./someprogram



Top command



[matthew@moonshine]$ sudo yum install epel-release
[matthew@moonshine]$ sudo yum install htop
[sudo] password for matthew:
Last metadata expiration check: 2:01:29 ago on Wed 28 Feb 
2024 06:48:20 AM CST.
Dependencies resolved.

Total download size: 2.3 M
Installed size: 3.5 M
Is this ok [y/N]:





Notice that in Linux threads are still just processes with their own process IDs.

The threads have reserved at total of 88 GB of RAM. How is that possible when this 
computer only has 62 GB RAM?



[matthew@moonshine Fortran_SMP]$ time ./serial_vecadd 1000000000

real 0m10.259s
user 0m7.993s
sys 0m2.238s
[matthew@moonshine Fortran_SMP]$ time OMP_NUM_THREADS=8 ./smp_vecadd 1000000000

real 0m7.460s
user 0m10.906s
sys 0m3.038s

Notice the amount of time on the CPU went up with 
SMP but the overall time to complete the 
computation went down.

Why?



[matthew@moonshine Fortran_SMP]$ time ./serial_vecadd 1000000000

real 0m3.838s
user 0m3.123s
sys 0m0.705s

[matthew@moonshine Fortran_SMP]$ time OMP_NUM_THREADS=4 ./smp_vecadd 1000000000

real 0m1.616s
user 0m5.618s
sys 0m0.677s

[matthew@moonshine Fortran_SMP]$ time OMP_NUM_THREADS=8 ./smp_vecadd 1000000000

real 0m0.840s
user 0m5.805s
sys 0m0.694s

If we don’t include the random number generation… 



• Julia is designed to be an 
interpreted, functional, high 
performance computing language. 
• Interpreted languages tend to be 

slow. (Yes really!)
• Julia is written to be interpreted but 

just as fast as compiled languages 
like C and FORTRAN.
• It’s the J in Jupyter 

Julia started in 2009 by Jeff Bezanson, Stefan Karpinski, 
Viral B. Shah, and Alan Edelman (mostly Harvard and 
MIT).

It is a young language with version 1.0 coming out in 
2018. Even though it is “stable” features still appear and 
disappear at an alarming rate, but seemed to have 
settled down a bit after versions 1.5.
BUT there is a bug in version 1.10.1 we will have to work 
around :(



So let’s install Julia

[matthew@moonshine ~]$ curl -fsSL https://install.julialang.org | sh

info: downloading installer

Welcome to Julia!

You already installed FORTRAN and C with YUM.

We can download Julia directly from their website with curl (client 
URL). We pipe the downloaded data to the sh shell which executes 
the installation shell script.



This will download and install the official Julia Language distribution
and its version manager Juliaup.

Juliaup will be installed into the Juliaup home directory, located at:

 /home/matthew/.juliaup

The julia, juliaup and other commands will be added to
Juliaup's bin directory, located at:

 /home/matthew/.juliaup/bin

This path will then be added to your PATH environment variable by
modifying the profile files located at:

 /home/matthew/.bashrc
 /home/matthew/.bash_profile

Julia will look for a new version of Juliaup itself every 1440 minutes when you start julia.

You can uninstall at any time with juliaup self uninstall and these
changes will be reverted.

? Do you want to install with these default configuration choices? ›
❯ Proceed with installation
 Customize installation
 Cancel installation



✔ Do you want to install with these default configuration choices? · 
Proceed with installation

Now installing Juliaup
Installing Julia 1.10.1+0.x64.linux.gnu
Configured the default Julia version to be 'release'.
Julia was successfully installed on your system.

Depending on which shell you are using, run one of the following
commands to reload the PATH environment variable:

 . /home/matthew/.bashrc
 . /home/matthew/.bash_profile

[matthew@moonshine ~]$

The PATH environment variable defines where the shell looks for programs



[matthew@moonshine ~]$ echo $PATH
/home/matthew/.local/bin:/home/matthew/bin:/usr/local/bin:/usr/bin:/usr/loca
l/sbin:/usr/sbin

The PATH environment variable defines where the shell looks for programs.
Let’s print the current value of PATH.

Colon separated list of paths to search.

 



Now installing Juliaup
Installing Julia 1.10.1+0.x64.linux.gnu
Configured the default Julia version to be 'release'.
Julia was successfully installed on your system.

Depending on which shell you are using, run one of the following
commands to reload the PATH environment variable:

 . /home/matthew/.bashrc
 . /home/matthew/.bash_profile

[matthew@moonshine ~]$

The .bashrc and .profile bash scripts are executed when you login (usually).



[matthew@moonshine ~]$ cat .bashrc
# >>> juliaup initialize >>>

# !! Contents within this block are managed by juliaup !!

case ":$PATH:" in
  *:/home/matthew/.juliaup/bin:*)
    ;;
  *)
    export PATH=/home/matthew/.juliaup/bin${PATH:+:${PATH}}
    ;;

esac

# <<< juliaup initialize <<<

Since the Julia software isn’t installed in /bin or any of the other usual places it 
modified your .bashrc so that the path that includes Julia is added to your PATH 
variable every time you login.

Concatenated the Julia path to front of the 
existing PATH.



[matthew@moonshine ~]$ source .bashrc

You can execute the .bashrc in several ways to make sure you can find Julia.
1) Log out and back in
2) Run the .bashrc script manually with source .bashrc (”.” is shorthand for source)

“Depending on which shell you are using*, run one of the following
commands to reload the PATH environment variable:
 
. /home/matthew/.bashrc
. /home/matthew/.bash_profile”

*This is badly worded – these scripts are both specific to the BASH shell.



Running the script adds the Julia location to the path. 

Now we can run Julia J

[matthew@moonshine ~]$ source .bashrc
[matthew@moonshine ~]$ echo $PATH
/home/matthew/.juliaup/bin:/home/matthew/.local/bin:/home/matthe
w/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
[matthew@moonshine ~]$



Julia Benchmark Tools 

• Since Julia is aimed at HPC is comes with some really nice 
benchmarking tools. 

• We will use them to measure how much multithreading speeds up 
our computations.

• But before we can install Julia packages we have to deal with issue 
533339: https://github.com/JuliaLang/julia/issues/53339



Certificate Bug Workaround 
(Github Julia Issue 53339)

$ mkdir -p .julia/config/
$ echo 'ENV["JULIA_SSL_CA_ROOTS_PATH"]="/etc/ssl/certs/ca-bundle.crt"' >\ 
> .julia/config/startup.jl

I’m keeping this in the slides because it is the kind of DevOps HPC engineers have to worry 
about all the time.

Julia version 1.10.1 looks for an encryption certificate using the wrong path. 
We have to give it the right path by creating a startup.jl file and setting a variable. 

The “\” means continue the command on the next line. “>” Sends the output into a file. Notice the 
nested quotes ' ” ” '!  
Careful if you copy and past the code above – the quote symbols often get garbled.



Certificate Bug Workaround 
(Github Julia Issue 53339)

$ mkdir -p .julia/config/
$ echo 'ENV["JULIA_SSL_CA_ROOTS_PATH"]="/etc/ssl/certs/ca-bundle.crt"' >\ 
> .julia/config/startup.jl

$ cat .julia/config/startup.jl
ENV["JULIA_SSL_CA_ROOTS_PATH"]=“/etc/ssl/certs/ca-bundle.crt"

I’m keeping this in class because it is the kind of DevOps HPC engineers have to worry 
about all the time.

Julia version 1.10.1 looks for an encryption certificate using the wrong path. 
We have to give it the right path by creating a startup.jl file and setting a variable. 

Check the file was created and has the right contents with “cat”



Now we can run Julia J

[matthew@moonshine ~]$ julia
       _
 _    _ _(_)_   |  Documentation: https://docs.julialang.org

 (_)   | (_) (_)   |
 _ _  _| |_  __ _  |  Type "?" for help, "]?" for Pkg help.

 | | | | | | |/ _` |  |
 | | |_| | | | (_| |  |  Version 1.10.1 (2024-02-13)
_/ |\__'_|_|_|\__'_|  |  Official https://julialang.org/ release

|__/          |

julia> 1 + 1
2

… and exit with exit()

This sis the Julia REPL* (Read, 
Evaluate, Print, and Loop). 
Interpreted languages have 
REPLs where you enter code – or 
they can read from file.

*I kind of hate the term REPL – so I’ll just call it the interpreter.



We import the Julia package manager, add Benchmark tools, and use the package.

julia> import Pkg;

julia> Pkg.add("BenchmarkTools")
  Updating registry at `~/.julia/registries/General.toml`
 Resolving package versions...
 Installed BenchmarkTools ── v1.5.0

<snip>
Precompiling project...
 10 dependencies successfully precompiled in 21 seconds.

julia> using BenchmarkTools



We can benchmark any function with the @benchmark macro

Here we are benchmarking the builtin sort function

Setup is run once per sample and but not included in the benchmark time.

Samples sets the number of times to run the function we are benchmarking.

julia> @benchmark sort(data) setup=(data=rand(10)) samples=1000

julia> data=rand(10)
10-element Vector{Float64}:
0.34728822898083356
0.9389609594353292
0.6127950927838776
0.18733946403131663
0.9262208042266743
0.7009554495876372
0.32478731787184756
0.615681279938658
0.4231459280329968
0.27727842077336873



Now we have a distribution of times over 1000 runs!

High Performance Benchmarking is an EXPERIMENTAL science (inductive reasoning)
as opposed to formal algorithmic analysis which is deductive reasoning (proofs).

HPC benchmarking’s language is statistics.

julia> @benchmark sort(data) setup=(data=rand(10)) samples=1000



HPC Benchmarking is an experimental science.

If computers are deterministic, why would we get a range of times for our sorting 
function?

julia> @benchmark sort(data) setup=(data=rand(10)) samples=1000

*A nanosecond (ns) is one-billionth (10-9) of a second. A 1Ghz CPU executes one cycle per nanosecond. 

*



julia> @benchmark sort(data) setup=(data=ones(10)) samples=1000

julia> ones(10)
10-element Vector{Float64}:
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Let’s remove the randomness from the input.



We still get variation. Can you think of some reasons why from the 
previous lectures?

julia> @benchmark sort(data) setup=(data=ones(10)) samples=1000



Git clone Julia looping code

• Clone https://github.com/gmfricke/Julia_SMP.git



Multithreading

• We just saw how Shared Memory Task Parallelism works with 
OpenMP.
• Julia supports the same thing with its own mechanism (Julia 

abandoned OpenMP)
• The paradigm is the same as the Fork and Join principle in OpenMP.



# Sum the elements of a
function serial_loop( a )
 total = 0

 for x in a
  total += x  # Compute running sum
 end

 return total
end

In looping.jl:



# Sum the elements of an array in parallel
using Base.Threads

function parallel_loop( a )
 p = zeros(nthreads()) # Somewhere to store the partial sums

 # The @threads macro does the work for us. Dividing the loop evenly 
  # between the threads            
 @threads for x in a
  p[threadid()] += x  # Each thread computes a partial sum
 end

 total = sum(p) # Add up the partial sums from each thread.
 return total

end

In looping.jl:



[matthew@moonshine ~]$ cd Julia_SMP/
[matthew@moonshine Julia_SMP]$ julia --threads 4

       _
 _    _ _(_)_   |  Documentation: https://docs.julialang.org

 (_)   | (_) (_)   |
 _ _  _| |_  __ _  |  Type "?" for help, "]?" for Pkg help.

 | | | | | | |/ _` |  |
 | | |_| | | | (_| |  |  Version 1.10.1 (2024-02-13)
_/ |\__'_|_|_|\__'_|  |  Official https://julialang.org/ release

|__/          |

julia>



[matthew@moonshine ~]$ cd Julia_SMP/
[matthew@moonshine Julia_SMP]$ julia --threads 4

       _
 _    _ _(_)_   |  Documentation: https://docs.julialang.org

 (_)   | (_) (_)   |
 _ _  _| |_  __ _  |  Type "?" for help, "]?" for Pkg help.

 | | | | | | |/ _` |  |
 | | |_| | | | (_| |  |  Version 1.10.1 (2024-02-13)
_/ |\__'_|_|_|\__'_|  |  Official https://julialang.org/ release

|__/          |

julia> julia> include("looping.jl")
parallel_loop (generic function with 1 method)



julia> julia> include("looping.jl")
parallel_loop (generic function with 1 method)

julia> serial_loop(rand(100))
51.361311058281835

julia> parallel_loop(rand(100))
48.56971707948273

julia>



julia> using BenchmarkTools

julia> @benchmark serial_loop(data) setup=(data=rand(1000)) samples=1000



julia> @benchmark parallel_loop(data) setup=(data=rand(1000)) samples=1000

SMP is slower! Find the size of array that makes SMP worthwhile…
10−9 seconds 1 nanosecond ns 1 CPU cycle on 1 GHz processor

10−6 1 microsecond µs 1000 CPU cycles

10−3 1 millisecond ms 1,000,000 cycles


