
Lecture 11: Pipelining,
Hyperthreading, and Compiler

Optimisation

Big Picture
• Remember in the ”brief history” lecture that there had been several early attempts to write high

level languages
• They were resisted because the average human assembly programmer could write faster code

than that produced by a high level language.
• Even though high level languages were much easier to read, it wasn’t until FORTRAN came along

and could produce code as fast as that the average human programmer could write that high level
languages took off.

• Compiler developers have had 60 years to improve their code generation.
• “We should forget about small efficiencies, say about 97% of the time: premature

optimization is the root of all evil.” - Sir Tony Hoare (Inventor of QuickSort)
• This means before you optimize your code make sure you’re optimizing something that

matters (i.e. find the bottlenecks and fix those).
• Assuming you are using an efficient algorithm (In the Big-O sense) it is rarely worth your

time to try and optimize low level routines – the compiler will usually do a better job.

Big Picture

• OK given that the compiler will do a better job than most programmers in speeding up your code
what are we going to talk about for the next 48 minutes?

• 1) You often have to tell the compiler to optimize your code.
• 2) You have to tell the compiler what you want to optimize (code size, compilation time, or

execution speed)
• 3) The compiler doesn’t always get it right. You have to test to make sure the optimisations you

asked for worked.
• 4) Writing your code in a certain way can make the compilers job easier. Write code that is easy to

optimize not optimized code
• 5) Identify bottlenecks can help you target compiler optimisations.
• 6) “Don’t give up your performance accidently” – compilers can’t compensate for carelessness.
• 7) Even if the compiler does it for you, it’s still good for you to know what it’s doing.

Pipelining

CPU instruction execution follows the Fetch, Decode, Execute, Write
cycle. This is the code execution pipeline.

• Fetch: Get an instruction from memory.
• Decode: Figure out what the instruction is supposed to do (ADD,

MULTIPLY, ETC) and potentially starts fetching operands from memory.
• Execute: CPU executes the decoded instruction on the operands.
• Write: Write the result of the instruction execution somewhere.

Pipelining
CPU instruction execution follows the Fetch, Decode, Execute, Write cycle.

• Fetch: Get an instruction from memory.
• Decode: Figure out what the instruction is supposed to do (ADD, MULTIPLY, ETC) and potentially starts fetching

operands from memory.
• Execute: CPU executes the decoded instruction on the operands.
• Write: Write the result of the instruction execution somewhere.

How long do these things take? In CPU cycles (it’s complex and the values below are generalities, some CPUs are
designed to do multiplication in 1 cycle – but they have to make other sacrifices to do it.)

• Fetch: If the instruction is in L1 cache (fastest) then 3 CPU cycles, slower cache 12
cycles, if DDR RAM then more than 100 cycles.

• Decode: 1-2 cycles
• Execute: ADD 1-3, SUBTRACT 1-3, MULTIPLICATION 3-12, DIVISION 16-80 cycles.
• Write: Write the result of the instruction execution somewhere. Depends where.

Pipelining
So different operations take different amounts of time (DIVIDE could be
40x slower than ADD).

And some things take a REALLY long time. Fetching data from RAM for
example (100 cycles). What about fetching from swap*?

When the CPU is waiting 100 cycles for data to arrive from RAM, those
CPU cycles are waisted.

*Varys a lot but an average ballpark figure is 1,000,000 CPU cycles.

Pipelining

• Out of order execution. Just because the
programmer said to perform operations in
a certain order doesn’t mean they really
have to be done in that order. Maybe there
is no dependency between the operations
and later operations can be performed
while the CPU is idle.
• CDC6400 built in 1964 was the first
machine to do this.
• The CPU looks at the sequence of
operations waiting to run and picks the
next instruction that’s “ready”.
• Meaning all the prerequisite operations
are complete.

• When the CPU is waiting 100 cycles for data
to arrive from RAM those CPU cycles are
waisted.
• So instead, the CPU tries to fill those idle
cycles with productive work.

Hyperthreading

• Out-of-order execution allows the CPU to fill idle cycles with other
instructions from the same thread. (A thread is a program counter
(PC) iterating through the instructions in a process.) But this isn’t
perfect and stalls or bubbles happen where no operation in the
thread is ready.
• The Kernel can swap processes in and out of so they can use the
CPU, but as we saw in the Kernel lecture the context switch is very
expensive.
• CPUs support switching whole threads without a context switch.
They remember the PC and register values for a different program
and start executing that when there is a pipeline stall.
• This is called hyperthreading. It looks to the operating system like
there is a whole additional CPU ready to execute a process. But
really it is using the same CPU hardware.

• When the CPU is waiting 100 cycles for data
to arrive from RAM those CPU cycles are
waisted.
• So instead, the CPU tries to fill those idle
cycles with productive work.

First chip to implement
hyperthreading (2002)
First chip to implement
hyperthreading (2002)

Sun Microsystems has
the patent (1994)

Hyperthreading

• Hyperthreading can improve CPU throughput by 0-
50% depending on the program.
• But that means it uses the CPU more efficiently – not
that the programs running on the CPU will necessarily
run faster. After all they now have to share hardware.
• The amount of improvement for 1 socket is something
like 30%, 2 sockets 15%, and for 4 or more sockets there
are no rules of thumb.
• The more threads there are the more contention
there is for accessing the cache and RAM and other
resources, which can slow everything down.

• When the CPU is waiting 100 cycles for data
to arrive from RAM those CPU cycles are
waisted.
• So instead, the CPU tries to fill those idle
cycles with productive work.

First chip to implement
hyperthreading (2002)
First chip to implement
hyperthreading (2002)

Sun Microsystems has
the patent (1994)

Hyperthreading

First chip to implement
hyperthreading (2002)

Sun Microsystems has
the patent (1994)

[matthew@moonshine ~]$ lscpu
Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 46 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 32
 On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
 Model name: Intel(R) Xeon(R) CPU E5-2670 0 @
2.60GHz
 CPU family: 6
 Model: 45
 Thread(s) per core: 2
 Core(s) per socket: 8
 Socket(s): 2
 Stepping: 7
 CPU max MHz: 3300.0000
 CPU min MHz: 1200.0000
 BogoMIPS: 5199.97

Identify whether hyperthreading is enabled. This is something you can turn on and
off in the BIOS, so you may or may not have it enabled.

Hyperthreading

First chip to implement
hyperthreading (2002)

Sun Microsystems has
the patent (1994)

Login to Wheeler, Hopper, or Xena.

Is hyperthreading (HT) enabled?

In HPC Clusters Hyperthreading is often disabled
because users don’t like to think their code is sharing
the CPU with someone else’s program.

Even if it makes the CPU more efficient it might not
speed up their particular program.

There is also the idea that HPC software will already
be so efficient that there is no point the HT and it just
false advertising to make it look like there are 2
(virtual) processors.

Compiler Optimisation: Strength Reduction

• Motivation: Not all CPU operations cost the same.
• Solution: The compiler rewrites your code to use the cheaper (called

weaker) operation.

So, for example,

4*x could be replaced with with (x+x)+(x+x)
 (3-12 cycles) versus (1-3 cycles x 3 = 3-9 cycles.)

Hoisting
Motivation: Don’t recompute values more than once
Solution: “hoist” loop invariants out of the loop

Eg.

int x = 0, y = 1, z = 2;
for (int i = 0; i < 100; i++)
 a[i] = i*x + y/z;

int x = 0, y = 1, z = 2;
int a = y/z;
for (int i = 0; i < 100; i++)
 a[i] = i*x + a;

The expression y/z is loop invariant, i.e. it doesn’t change from one iteration to the next.
So hoist it out.

Precalculate constants
• Motivation: Constant values are much easier to optimize because it

simplifies the code and makes it predictable.
• Solution: replace calculations with results right away

int x = 0, y = 1, z = 2;
int a = y/z;
for (int i = 0; i < 100; i++)
 a[i] = i*x + a;

int x = 0;
int a = 1/2;
for (int i = 0; i < 100; i++)
 a[i] = i*x + a;

Precalculate constants
• Motivation: Constant values are much easier to optimize because it

simplifies the code and makes it predictable.
• Solution: replace calculations with results right away
int x = 0, y = 1, z = 2;
int a = y/z;
for (int i = 0; i < 100; i++)
 a[i] = i*x + a;

int x = 0;
int a = 1/2;
for (int i = 0; i < 100; i++)
 a[i] = i*x + a;

int x = 0;
int a = 0;
for (int i = 0; i < 100; i++)
 a[i] = i*x + 0;

Precalculate constants
• Motivation: Constant values are much easier to optimize because it

simplifies the code and makes it predictable.
• Solution: replace calculations with results right away
int x = 0, y = 1, z = 2;
int a = y/z;
for (int i = 0; i < 100; i++)
 a[i] = i*x + a;

int x = 0;
int a = 1/2;
for (int i = 0; i < 100; i++)
 a[i] = i*x + a;

int x = 0;
int a = 0;
for (int i = 0; i < 100; i++)
 a[i] = i*x + 0;

int x = 0;
for (int i = 0; i < 100; i++)
 a[i] = i*x;

Loop Unrolling

• Motivation. CPU Pipelining works well when the CPU can predict what
is coming next. Everytime there is a logic branch, that gets harder
because a choice is being made.
• Solution: Reduce the number of choices in the code.

cin >> y;
int array[4*y] = {0}
for (i = 0; i < 2*y; i++)
 array[i] = i;

cin >> y;
int array[4*y] = {0}
for (i = 0; i < 2*y; i+=2) {
 array[i] = i;
 array[i+1] = i+1; }

The number of choices is reduced from 2y to y. We also do half as many i < 2y? checks.

Loop Splitting

• Motivation: Pipelining does well when there are fewer dependencies
between parts of the code, so it can do out-of-order execution.
• Solution: Split loops to remove dependencies.

int i = 10;
for (int j = 0; j < 10; j++)
{
 if (i < 5)
 y[j] = x[i];
 else
 y[j] = x[j];
 i = j;
}

int i = 10;
for (int j = 0; j < 5; j++)
{
 y[j] = x[i];
 i = j;
}

for (int j = 5; j < 10; j++)
 y[j] = x[j];

The second loop doesn’t depend on i anymore and so can be executed out-of-order.

Loop Splitting (peeling)

• Motivation: Pipelining does well when there are fewer dependencies
between parts of the code, so it can do out-of-order execution.
• Solution: Split loops to remove dependencies.

int i = 5;
for (int j = 0; j < 5; j++)
{
 y[j] = x[i];
 i = j;
}

y[0] = x[5]
for (int j = 0; j < 5; j++)
{
 y[i-1] = x[i];
}

In this case we removed the dependency on i inside the loop entirely.

Inlining

• Motivation: Functions make code easier to read and understand, but
calling a function is expensive (has to be put on the call stack, etc).
• Solution: Replace frequently used functions with a copy of the code in

the function.
int add(int a, b) { return a + b; }

int x = 2;
for (int i = 0; i < 10e9; i++){
 array[i] = add(i, x);
}

int x = 2;
for (int i = 0; i < 10e9; i++)
 array[i] = i+x;

I’ll ask you to recall this one at
the end of class.

Cache Awareness
(loop indexing order)

• Motivation: When accessing a 2D array, it is
actually layed out as a single 1D array in
memory. When looping over the 2D array,
accessing memory that is near the memory
you accessed in the last iteration is much
faster than memory that is far away. (Nearby
memory will likely have been put in the
cache when the first element was read.)

• Solution: you have to know how your
compiler lays out 2D arrays in memory. Does
it use row-major or column major layouts. C,
C++, and Python are row major. FORTRAN,
MATLAB, and Julia are column major.

In RAM
Conceptually

Column MajorColumn Major

Row Major

int array2d[3][3] = {{1,2,3},{4,5,6},{7,8.9}}
integer :: array(3,3) = reshape([(i, i=1,9)], [3,3])

Cache Awareness
(loop indexing order)

for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 printf(array2d[i][j]);

do i = 1, 3
 do j = 1, 3
 print *, array2d(j, i)
 end do
end do

In RAM
Conceptually

The double loops access the closest memory locations on consecutive iterations. Fast.

int array2d[3][3] = {{1,2,3},{4,5,6},{7,8.9}}
integer :: array(3,3) = reshape([(i, i=1,9)], [3,3])

Row Column

Column Row

Cache Awareness
(loop indexing order)

for (int i = 0; i < 3; i++)
 for (int j = 0; j < 3; j++)
 printf(array2d[j][i]);

do i = 1, 3
 do j = 1, 3
 print *, array2d(i, j)
 end do
end do

int array2d[3][3] = {{1,2,3},{4,5,6},{7,8.9}}
integer :: array(3,3) = reshape([(i, i=1,9)], [3,3])

In RAM
Conceptually

The double loops access the memory locations far from each other on consecutive iterations. Slow.

[matthew@moonshine ~]$ git clone https://github.com/gmfricke/cache_example.git
Cloning into 'cache_example'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (5/5), done.
remote: Total 6 (delta 0), reused 3 (delta 0), pack-reused 0
Receiving objects: 100% (6/6), done.
[matthew@moonshine ~]$ cd cache_example/

float averageMatRowMajor(int** mat, int n){
 int i, j, total=0;
 for (i = 0; i < n; i++){
 for (j = 0; j < n; j++){
 total+= mat[i][j];
 }
 }
 return (float)total/(n*n);

}

float averageMatColumnMajor(int** mat, int n){
 int i, j, total=0;
 for (i = 0; i < n; i++){
 for (j = 0; j < n; j++){
 total+= mat[j][i];
 }
 }
 return (float)total/(n*n);

}

[matthew@moonshine cache_example]$ gcc cachex.c -o gnu_cachex
[matthew@moonshine cache_example]$./gnu_cachex 10000
Row major average is: 7.56; time is 228084773 nanoseconds
Column major average is: 7.56; time is 1259461051 nanoseconds

Row major indexing was 7.557427 times faster than column major indexing.
[matthew@moonshine cache_example]$

This is a C program. The reverse will be true for a FORTRAN or Julia program.

Loop Interchange

• Motivation: The order in which array elements are accessed matters.
• Solution: Rearrange loops to make sure the indexing matches row or

column major arrays.

int size=10000;
int a[size][size];
 for (int j=0; y < size; i++)
 for (int i=0; x<size; j++)
 a[i][j]=i*j

int size=10000;
int a[size][size];
 for (int i=0; y < size; i++)
 for (int j=0; x<size; j++)
 a[i][j]=i*j

GCC Optimization Options
• Those compiler optimisations are some of the more common ones.
• The GNU C compiler has more than 200 optimizations like these.
• The optimisations are usually grouped into speed, space, and debugging categories:
1. -O0 no optimization
2. -O or –O1 the compiler reduces program execution time and program size, at the

expense of taking longer to compile.
3. -O2 enables more optimisations, at the expense of compilation time.
4. -O3 everything in O2 but adds more aggressive optimisations such as loop unrolling

that will increase the size of the compiled program.
5. -Ofast everything in O3 but violates some C standards to produce faster code.
6. -Os enables all O2 optimisations except those that often increase program size.
7. -Oz aggressively optimizes to reduce program size.
8. -Og optimized for debugging

GNU Compiler List Optimisations

$ gcc --help=optimizers
$ gcc -Q --help=optimizers

To see the difference between optimizations we can use diff
Diff is a useful linux command that compares two files and shows
the differences.
$ diff <(gcc -O0 -Q --help=optimizers) <(gcc -O1 -Q --help=optimizers)
$ diff <(gcc -Q --help=optimizers) <(gcc -O2 -Q --help=optimizers)
 (In the last two commands we use “<()” process substitution to
give the output of the two gcc commands a temporary file, since
diff wants to compare two files)

Clone Sample Code (matrix multiply and quicksort)

[matthew@moonshine ~]$ git clone https://github.com/gmfricke/gnu_compiler_optimisations.git

Cloning into 'gnu_compiler_optimisations'...

remote: Enumerating objects: 9, done.

remote: Counting objects: 100% (9/9), done.

remote: Compressing objects: 100% (8/8), done.

remote: Total 9 (delta 1), reused 9 (delta 1), pack-reused 0

Receiving objects: 100% (9/9), done.

Resolving deltas: 100% (1/1), done.

Compare Optimisation Levels

• Take 5 minutes, cd into each of the subdirectories O0, 01, O2, and O3
and compile the simple_matmul.c and quicksort.c code with the
optimization level that matches the directory name.
• For example:

$ cd gnu_compiler_optimisations/
$ ls
O0 O1 O2 O3 prof
$ cd O0

Compare Optimisation Levels

• Take 5 minutes, cd into each of the subdirectories O0, 01, O2, and O3
and compile the simple_matmul.c and quicksort.c code with the
optimization level that matches the directory name, and run the
programs
• For example:

$ cd O0
$ gcc -O0 simple_matmul.c -o gnu_matmul
$./gnu_matmul 1500 1000 1000 500
1500x1000 * 1000x500 took 4.388221 seconds

Compare Optimisation Levels

• Take 5 minutes, cd into each of the subdirectories O0, 01, O2, and O3
and compile the simple_matmul.c and quicksort.c code with the
optimization level that matches the directory name, and run the
programs
• For example:

$ gcc -O0 quicksort.c -o gnu_quicksort
$./gnu_quicksort 100000000
Sorting 1e+08 elements took 28.694275 seconds

That’s 8 zeros in the argument. It is the size of the array to sort.

Compiler Optimisations

• Did you see differences in the execution times?
• Were there always improvements in execution speed as you increased

the optimization level?
• Did the changes in speed differ for the matrix multiplication program

and quicksort?

Optimisation is all about finding the
Performance Bottlenecks
• Profiling allows you to learn where your program spent its time and

which functions called which other functions while it was executing.
This information can show you which pieces of your program are
slower than you expected, and might be candidates for rewriting to
make your program execute faster. It can also tell you which functions
are being called more or less often than you expected. This may help
you spot bugs that had otherwise been unnoticed.

Procedure

• You must compile and link your program with profiling enabled.
• You must execute your program to generate a profile data file.
• You must run a profilers gprof to analyze the profile data.

Profiling with GNU Tools

$ cd ../prof
$ gcc --prof quicksort.c -o gnu_quicksort
$./gnu_quicksort 100000000
Sorting 1e+08 elements took 45.831943 seconds

Profiling with GNU Tools

$ cd ../prof
$ gcc --prof quicksort.c -o gnu_quicksort
$./gnu_quicksort 100000000
Sorting 1e+08 elements took 45.831943 seconds
$ ls
gmon.out gnu_quicksort quicksort.c simple_matmul.c

Profiling with GNU Tools – You can see which
functions use the most time.

$ gprof gnu_quicksort gmon.out

So about 14% of the time the program is in the swap
function.
[4] 14.3 3.06 0.00 1765232924 swap [4]

Profiling with GNU Tools
Let’s see how compiling with O2 changes things
$ gcc -O2 --prof quicksort.c -o gnu_quicksort
$./gnu_quicksort 100000000
Sorting 1e+08 elements took 11.085591 seconds
$ gprof gnu_quicksort gmon.out

How much is the swap function used now?

Notice the swap function has been optimized away.

Function calls are expensive, they make code easier to
understand, but the compiled code doesn’t need to be
easy to read. The swap function is very simple and
called a lot, so it was removed by the compiler.

Anyone remember which compiler optimization removes
functions?

