
Lecture 10: User Space

Kernel to Userspace Transition

• The Kernel code is tightly controlled by Linus
Torvolds. He decides* what is included in new
releases.
• The Kernel code has to be efficient and stable.

Kernel code runs as a single monolithic
process.
• All the other code in the world that executes

on Linux is in ”User Space” under the control
of the Kernel.

*This is why he wrote git. Probably named that because he has to be a “ruthless git” when deciding what kernel changes
to include.

Linus Torvolds
Finnish Computer Scientist

The init program (system for example)
• Systemd is a collection of programs.
• These programs often run as daemons* (increasingly

called services, that’s what the “d” stands for)
• Daemons run in the background performing system tasks

usually without administrator intervention.
• Systemd daemon programs are in /sbin (system

binaries)
• Programs that admins and users run to interface with

systemd are in /bin (general binaries).
• The majority of the systemd code is in /lib/systemd.

(/lib is for library files)

*In Greek mythology a daemon was a spirit that served the gods. They were below the gods but above mere mortals. They often served has helpers and guardians
of humans.
†Debate between Linus Torvolds and Lennart Poettering regarding the User Space/Kernel interface https://www.youtube.com/watch?v=Nn-SGblUhi4

Lennart Poettering†
German/Brazilian Computer
Scientist

https://www.youtube.com/watch?v=Nn-SGblUhi4

SystemD paradigm

• Systemd handles the boot process after the Kernel has identified
devices and filesytems.
• Systemd is relatively recent and aims to replace a lot of standard

Linux tools (such as cron)*
• Systemd is “goal oriented” where each goal is defined as a unit.
• Most units run as daemons, they start on boot and run as long as the

system is up.
• Each unit has a configuration file that defines how it works. These

config files are in /usr/lib/systemd/system/

SystemD paradigm

[matthew@moonshine ~]$ ls /usr/lib/systemd/system | head -n 10
arp-ethers.service
auditd.service
auth-rpcgss-module.service
autovt@.service
basic.target
basic.target.wants
blk-availability.service
blockdev@.target
bluetooth.target
boot-complete.target

• Each unit has a configuration file that defines how it works. These
config files are in /usr/lib/systemd/system/

[matthew@moonshine ~]$ cat /usr/lib/systemd/system/systemd-udevd.service
SPDX-License-Identifier: LGPL-2.1-or-later

#

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or

(at your option) any later version.

[Unit]

Description=Rule-based Manager for Device Events and Files

Documentation=man:systemd-udevd.service(8) man:udev(7)

DefaultDependencies=no

After=systemd-sysusers.service systemd-hwdb-update.service

Before=sysinit.target

ConditionPathIsReadWrite=/sys

[Service]

CapabilityBoundingSet=~CAP_SYS_TIME CAP_WAKE_ALARM

Delegate=pids

Type=notify

Note that udev will reset the value internally for its workers

OOMScoreAdjust=-1000

Sockets=systemd-udevd-control.socket systemd-udevd-kernel.socket

Restart=always

Recall from the
devices lecture that
the udev deamon
handles device
events reported by
the Kernel.

[matthew@moonshine ~]$ cat /usr/lib/systemd/system/systemd-udevd.service
SPDX-License-Identifier: LGPL-2.1-or-later

#

This file is part of systemd.

#

systemd is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or

(at your option) any later version.

[Unit]

Description=Rule-based Manager for Device Events and Files

Documentation=man:systemd-udevd.service(8) man:udev(7)

DefaultDependencies=no

After=systemd-sysusers.service systemd-hwdb-update.service

Before=sysinit.target
ConditionPathIsReadWrite=/sys

[Service]

CapabilityBoundingSet=~CAP_SYS_TIME CAP_WAKE_ALARM

Delegate=pids

Type=notify

Note that udev will reset the value internally for its workers

OOMScoreAdjust=-1000

Sockets=systemd-udevd-control.socket systemd-udevd-kernel.socket

Restart=always

Systemd units start as soon as
they are ready, the order is
constrained by the “before” and
“after” keywords.

Systemd units start as soon as
they are ready, the order is
constrained by the “before” and
“after” keywords.

• Services
 Manage Linux daemons
• Targets
 Manage other units (starting groups of units for example)
• Sockets
 Handles socket communications (see devices lecture)
• Mounts
 For accessing filesystems

Unit Types

Systemd Daemon Example

• This example has three parts.
1. A little python program that prints to standard out whatever it receives on

standard in (recall standard out and standard in from the devices lecture)
2. A systemd socket unit that opens a TCP network port (4444) and listens for

data (recall TCP ports from the networking lecture)
3. A systemd service unit that creates a new daemon process to handle

connections to port 4444. A new daemon is created for each new
connection so it can hold multiple conversations at once.

• We will also need to install a little program to easily write data to port 4444.

• SELinux is a security daemon. We will have to temporarily make it not care about
port 4444.

Git Clone the Files
[matthew@moonshine ~]$ git clone https://github.com/gmfricke/echo_daemon.git

Cloning into 'echo_daemon'...

remote: Enumerating objects: 6, done.

remote: Counting objects: 100% (6/6), done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 6 (delta 0), reused 6 (delta 0), pack-reused 0

Receiving objects: 100% (6/6), done.

https://github.com/gmfricke/echo_daemon.git

Install socat (socket concatenator – it’s like the “cat” command
you have been using, but for network sockets)
[matthew@moonshine ~]$ sudo yum install socat

Only one person per server team needs to do this

Make SELinux “Permissive” so we can use the port
[matthew@moonshine ~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 33

Make SELinux “Permissive” so we can use the port
[matthew@moonshine ~]$ sudo setenforce Permissive
[matthew@moonshine ~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: permissive
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Memory protection checking: actual (secure)
Max kernel policy version: 33

Read through the systemd and python code.
[matthew@moonshine echo_daemon]$ cd echo_daemon/
[matthew@moonshine echo_daemon]$ ls
echod@.service echod.socket echo.py README.md

Read through the systemd and python code.
[matthew@moonshine echo_daemon]$ cat echod.socket

Create a Socket to Listen to
[Unit]
Description = Echo server

[Socket]
ListenStream = 4444
Accept = yes

[Install]
WantedBy = sockets.target

Socket units
automatically look
for a service unit
with the same
name + @ and
activate that
service. In this case
echod@.service.

Read through the systemd and python code.

[matthew@moonshine echo_daemon]$ cat echod@.service
echo@.service
[Unit]
Description=Echo server service

[Service]
User=root
ExecStart=/sbin/echo.py
StandardInput=socket

The @ means this is a
“template service”.
Template services take an
argument – in this case it
will be an identifier to
uniquely label the
conversation this service
will handle. (More than one
program might connect to
port 4444 at a time).

Read through the systemd and python code.

[matthew@moonshine echo_daemon]$ cat echod@.service
echo@.service
[Unit]
Description=Echo server service

[Service]

User=root
ExecStart=/sbin/echo.py
StandardInput=socket

Read through the systemd and python code.

[matthew@moonshine echo_daemon]$ cat echod@.service
echo@.service
[Unit]
Description=Echo server service

[Service]
User=root
ExecStart=/sbin/echo.py
StandardInput=socket

This the path to our
program that will
handle the data and
write a reply.

Python Program to Read from Standard in and
write to standard out.

[matthew@moonshine echo_daemon]$ cat echo.py
#!/usr/bin/python

Program that reads
import sys

Incoming Message
message = sys.stdin.readline().strip()

Print the message
sys.stdout.write("Echo Server Received: " + message + "\n")

Python is a scripting language.

The first line tells the system what program to
use to execute the script.

Guido van Rossen
Dutch Computer Scientist and
“benevolent dictator for life"
(BDFL)

• Guido wrote Python to be a
system scripting language. It’s
designed to make automating
Linux tasks easy.
• It became so popular that now

it is used for all sorts of tasks
and has become a general
purpose language.

Let’s move these files into place (coordinate
with your team mate)

[matthew@moonshine echo_daemon]$ sudo cp echo.py /sbin/

[matthew@moonshine echo_daemon]$ sudo cp echod@.service /usr/lib/systemd/system/

[matthew@moonshine echo_daemon]$ sudo cp echod.socket /usr/lib/systemd/system/

Now activate the echod.socket systemd unit
We are going to start the daemon that listens for data on socket 4444. It
sits between the “Kernel god” and the “mortal user” programs.

[matthew@moonshine echo_daemon]$ sudo systemctl start echod.socket

We use the systemctl program to control system units.

Now check the status of the echod socket
handler daemon.
[matthew@moonshine echo_daemon]$ sudo systemctl start echod.socket
[matthew@moonshine echo_daemon]$ systemctl status echod.socket
● echod.socket - Echo server

 Loaded: loaded (/usr/lib/systemd/system/echod.socket; disabled; preset: disabled)

 Active: active (listening) since Sun 2024-02-18 00:28:46 CST; 11s ago

 Until: Sun 2024-02-18 00:28:46 CST; 11s ago

 Listen: [::]:4444 (Stream)

 Accepted: 0; Connected: 0;

 Tasks: 0 (limit: 407887)

 Memory: 8.0K

 CPU: 595us

 CGroup: /system.slice/echod.socket

[matthew@moonshine echo_daemon]$

Journalctl -u {unit name} displays the system
unit log
[matthew@moonshine echo_daemon]$ sudo journalctl -u echod.socket
Feb 18 00:28:46 moonshine systemd[1]: Listening on Echo server.

Any error messages will show up here

Journalctl -xe will show all messages from
systemd
[matthew@moonshine echo_daemon]$ sudo journalctl -xe
Feb 18 00:37:58 moonshine sshd[191411]: Received disconnect from 111.230.20.37 port 48942:11: Bye Bye [preauth]

Feb 18 00:37:58 moonshine sshd[191411]: Disconnected from invalid user xmj 111.230.20.37 port 48942 [preauth]

Feb 18 00:38:22 moonshine sshd[191480]: Invalid user nichengzhuo from 186.117.143.206 port 35074

Feb 18 00:38:22 moonshine sshd[191480]: pam_unix(sshd:auth): check pass; user unknown

Feb 18 00:38:22 moonshine sshd[191480]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh
ruser= rhost=186.117.143.206

Feb 18 00:38:24 moonshine sshd[191480]: Failed password for invalid user nichengzhuo from 186.117.143.206 port 35074
ssh2

Feb 18 00:38:25 moonshine sshd[191480]: Received disconnect from 186.117.143.206 port 35074:11: Bye Bye [preauth]

Feb 18 00:38:25 moonshine sshd[191480]: Disconnected from invalid user nichengzhuo 186.117.143.206 port 35074 [preauth]

Feb 18 00:37:22 moonshine sshd[191341]: Failed password for invalid user yaowz from 186.117.143.206 >

Feb 18 00:37:23 moonshine sshd[191341]: Received disconnect from 186.117.143.206 port 44992:11: Bye >

Feb 18 00:37:23 moonshine sshd[191341]: Disconnected from invalid user yaowz 186.117.143.206 port 44>

Feb 18 00:37:35 moonshine sudo[191137]: pam_unix(sudo:session): session closed for user root

Feb 18 00:37

Journalctl -f will display the log “live”
[matthew@moonshine echo_daemon]$ sudo journalctl -f
Feb 18 00:41:38 moonshine sshd[191876]: Failed password for root from 103.124.191.67 port 51242 ssh2

Feb 18 00:41:40 moonshine sshd[191876]: Connection closed by authenticating user root 103.124.191.67 port 51242
[preauth]

Feb 18 00:41:59 moonshine sshd[191941]: Invalid user forest from 111.230.20.37 port 53846

Feb 18 00:41:59 moonshine sshd[191941]: pam_unix(sshd:auth): check pass; user unknown

Feb 18 00:41:59 moonshine sshd[191941]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
tty=ssh ruser= rhost=111.230.20.37

Feb 18 00:42:01 moonshine sshd[191941]: Failed password for invalid user forest from 111.230.20.37 port 53846
ssh2

Feb 18 00:42:01 moonshine sshd[191941]: Received disconnect from 111.230.20.37 port 53846:11: Bye Bye [preauth]

Feb 18 00:42:01 moonshine sshd[191941]: Disconnected from invalid user forest 111.230.20.37 port 53846
[preauth]

Feb 18 00:42:15 moonshine sudo[191980]: matthew : TTY=pts/1 ; PWD=/home/matthew/echo_daemon ; USER=root ;
COMMAND=/bin/journalctl -f

Feb 18 00:42:15 moonshine sudo[191980]: pam_unix(sudo:session): session opened for user root(uid=0) by
matthew(uid=1000)

Feb 18 00:42:20 moonshine sshd[191736]: fatal: Timeout before authentication for 140.246.225.169 port 47158

Journalctl -f will display the log “live”
[matthew@moonshine echo_daemon]$ sudo journalctl -f
Feb 18 00:41:38 moonshine sshd[191876]: Failed password for root from 103.124.191.67 port 51242 ssh2

Feb 18 00:41:40 moonshine sshd[191876]: Connection closed by authenticating user root 103.124.191.67 port 51242
[preauth]

Feb 18 00:41:59 moonshine sshd[191941]: Invalid user forest from 111.230.20.37 port 53846

Feb 18 00:41:59 moonshine sshd[191941]: pam_unix(sshd:auth): check pass; user unknown

Feb 18 00:41:59 moonshine sshd[191941]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
tty=ssh ruser= rhost=111.230.20.37

Feb 18 00:42:01 moonshine sshd[191941]: Failed password for invalid user forest from 111.230.20.37 port 53846
ssh2

Feb 18 00:42:01 moonshine sshd[191941]: Received disconnect from 111.230.20.37 port 53846:11: Bye Bye [preauth]

Feb 18 00:42:01 moonshine sshd[191941]: Disconnected from invalid user forest 111.230.20.37 port 53846
[preauth]

Feb 18 00:42:15 moonshine sudo[191980]: matthew : TTY=pts/1 ; PWD=/home/matthew/echo_daemon ; USER=root ;
COMMAND=/bin/journalctl -f

Feb 18 00:42:15 moonshine sudo[191980]: pam_unix(sudo:session): session opened for user root(uid=0) by
matthew(uid=1000)

Feb 18 00:42:20 moonshine sshd[191736]: fatal: Timeout before authentication for 140.246.225.169 port 47158

You or your teammate open a terminal to
monitor your echod@ service log

[matthew@moonshine ~]$ sudo journalctl -f -u "echo@*”

Write data to port 4444 with socat.
$ socat - TCP:moonshine:4444

test

Echo Server Received: test

Feb 17 23:18:39 moonshine systemd[1]:
Started Echo server service
(127.0.0.1:52724).
Feb 17 23:18:42 moonshine systemd[1]:
echo@25-127.0.0.1:4444-
127.0.0.1:52724.service: Deactivated
successfully.

Can you write to another team’s echo server?

Clean up our insecure deamon
[matthew@moonshine echo_daemon]$ sudo systemctl stop echod.socket

[matthew@moonshine echo_daemon]$ systemctl status echod.socket

○ echod.socket - Echo server

 Loaded: loaded (/usr/lib/systemd/system/echod.socket; disabled; preset: disabled)

 Active: inactive (dead)

 Listen: [::]:4444 (Stream)

 Accepted: 0; Connected: 0;

Reenable “Secure ”Linux
[matthew@moonshine echo_daemon]$ sudo setenforce Enforcing

[matthew@moonshine echo_daemon]$ sestatus
SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

Max kernel policy version: 33

The Default Target
[matthew@moonshine echo_daemon]$ systemctl status default.target

● multi-user.target - Multi-User System

 Loaded: loaded (/usr/lib/systemd/system/multi-user.target; indirect; preset: disable>

 Active: active since Tue 2024-02-06 20:21:25 CST; 1 week 4 days ago

 Until: Tue 2024-02-06 20:21:25 CST; 1 week 4 days ago

 Docs: man:systemd.special(7)

The Default Target – Defines a set of daemons
to start on boot.

[matthew@moonshine echo_daemon]$ systemctl list-dependencies default.target

default.target
● ├─auditd.service
● ├─chronyd.service
● ├─crond.service
● ├─firewalld.service
● ├─irqbalance.service
● ├─kdump.service
○ ├─mdmonitor.service
● ├─NetworkManager.service
○ ├─rpcbind.service
● ├─rsyslog.service
● ├─sshd.service
○ ├─sssd.service
● ├─systemd-ask-password-wall.path
● ├─systemd-logind.service
○ ├─systemd-update-utmp-runlevel.service
● ├─systemd-user-sessions.service

List all units…

[matthew@moonshine echo_daemon]$ systemctl list-units | head -n 10
 UNIT LOAD

ACTIVE SUB DESCRIPTION

 proc-sys-fs-binfmt_misc.automount loaded
active waiting Arbitrary Executable File Formats File System Automount Point

 sys-devices-pci0000:00-0000:00:01.0-0000:02:00.0-net-eno3.device loaded
active plugged NetXtreme BCM5720 Gigabit Ethernet PCIe

 sys-devices-pci0000:00-0000:00:01.0-0000:02:00.1-net-eno4.device loaded
active plugged NetXtreme BCM5720 Gigabit Ethernet PCIe

 sys-devices-pci0000:00-0000:00:01.1-0000:01:00.0-net-eno1.device loaded
active plugged NetXtreme BCM5720 Gigabit Ethernet PCIe

 sys-devices-pci0000:00-0000:00:01.1-0000:01:00.1-net-eno2.device loaded
active plugged NetXtreme BCM5720 Gigabit Ethernet PCIe

 sys-devices-pci0000:00-0000:00:02.2-0000:03:00.0-host1-target1:2:0-1:2:0:0-block-sda-sda1.device loaded
active plugged PERC_H310 EFI\x20System\x20Partition

 sys-devices-pci0000:00-0000:00:02.2-0000:03:00.0-host1-target1:2:0-1:2:0:0-block-sda-sda2.device loaded
active plugged PERC_H310 2

 sys-devices-pci0000:00-0000:00:02.2-0000:03:00.0-host1-target1:2:0-1:2:0:0-block-sda-sda3.device loaded
active plugged PERC_H310 3

 sys-devices-pci0000:00-0000:00:02.2-0000:03:00.0-host1-target1:2:0-1:2:0:0-block-sda.device loaded
active plugged PERC_H310

System V
• System V is a very old way to startup User Space programs when the system boots up.

• It is still used today even though the newer Systemd also starts up daemons.
• System V has “runlevels”. Different startup/shutdown scripts are run during each

runlevel.
• There are 6 runlevels
0 — Halt
1 — Single-user text mode
2 — Not used (user-definable)
3 — Full multi-user text mode
4 — Not used (user-definable)
5 — Full multi-user graphical mode (with an X-based login screen)
6 — Reboot

Who –r shows the current runlevel and when
it started

[matthew@moonshine ~]$ who –r

run-level 3 2024-02-06 20:21

[matthew@moonshine ~]$ ssh wheeler
mfricke@wheeler:~ $ ls /etc/rc.d/
init.d rc0.d rc1.d rc2.d rc3.d rc4.d rc5.d rc6.d rc.local

Wheeler’s OS is old enough that it still has System V
scripts. Each of the subdirectories correspond to a
runlevel. For example, rc6.d scripts exectute on
shutdown.

When troubleshooting a system we often want to reboot into the Single User Text Mode runlevel.
This mode has almost nothing extra running which makes debugging easier. (Like
‘safe mode” in Windows – but even more barebones.)
The option to boot to single-user mode is currently “rescue.target” in systemd

https://learn.microsoft.com/en-us/troubleshoot/azure/virtual-machines/serial-console-grub-single-user-mode

