
HPC Project1: High Performance Linpack

Matthew Fricke

April 2024

1 Project Assistant Meetings

The class project assistant is Ryan Scherbarth. All teams must meet with Ryan
twice. Once in the first week of the project and once in the second week. These
meetings are to check your progress and to help you get unstuck if you run into
trouble.

You should also make use of Nicholas Bacon and my office hours.

2 Introduction

In this project you will run the High Performance Linpack benchmark on the
Hopper and Wheeler Clusters. This project will teach you that how you divide
a computation across CPUs and compute nodes is critical to the performance
of HPC applications.
You have two goals for each cluster:

1. Find a combination of parameters that maximised the FLOPS reported
by HPL on your machine.

2. Describe in your report how your choice of parameters resulted in your
benchmark score, and relate that to the hardware you are using.

Make sure you start early. You cannot predict how busy Wheeler and Hopper
will be so don’t get stuck waiting for hours for your jobs to even start close to
the deadline.

I have compiled HPL code for you to use. Refer to the Slurm scripts in the
github repository to see the compiler used and the Lmod module names.

2.1 High Level Overview of HPL

The following is mostly taken from Jack Dongarra’s HPL Lab page: HPL.

1

https://icl.utk.edu/hpl/faq/index.html


HPL measures the floating point execution rate for solving a system of linear
equations. It relies on an MPI library and a linear algebra library for commu-
nication and solving the linear equations. The output file gives you the number
of floating point operations executed per second. This is the value we want to
maximise. Gflop/s is a rate of execution - billion (109) of floating point opera-
tions per second. Whenever this term is used it refers to 64-bit floating point
operations and the operations are either addition or multiplication (a “fused”
multiply/add is counted as two floating point operations).

The theoretical peak is based not on an actual performance from a bench-
mark run, but on a paper computation to determine the theoretical peak rate
of execution of floating point operations for the machine. This is the number
manufacturers often cite; it represents an upper bound on performance. That
is, the manufacturer guarantees that programs will not exceed this rate - sort
of a “speed of light” for a given computer. The theoretical peak performance is
determined by counting the number of floating-point additions and multiplica-
tions (in full precision) that can be completed during a period of time, usually
the cycle time of the machine. For example, an Intel Itanium 2 at 1.5 GHz can
complete 4 floating point operations per cycle or a theoretical peak performance
of 6 GFlop/s.

Intel no longer publishes FLOPS per cycle for their processors. Instead they
have a table with total GFlops. One of the cluster CPUs is listed there:

Xeon Processor GFlop table.
Here is an HPL results sheet that you should find useful for determining the

theoretical max for one of the clusters: HPC Challenge Benchmark Record.

3 Tuning HPL

You need to modify the input data file HPL.dat. The code provided in the
github repository below will allow you to automate this process to some extent
by defining a template file and scripts to run jobs with different HPL parameters.
This file contains information about the problem sizes, machine configuration,
and algorithm features to be used by the executable.

2

https://www.intel.com/content/dam/support/us/en/documents/processors/APP-for-Intel-Xeon-Processors.pdf
https://hpcchallenge.org/hpcc/hpcc_record.cgi@id=397.html


What problem size (matrix dimension N) should I use? In order to find out
the best performance of your system, the largest problem size fitting in memory
is what you should aim for. The amount of memory used by HPL is essentially
the size of the coefficient matrix. So for example, if you have 4 nodes with
256 Mb of memory on each, this corresponds to 1 Gb total, i.e., 125 M double
precision (8 bytes) elements. The square root of that number is 11585. One
definitely needs to leave some memory for the OS as well as for other things,
so a problem size of 10000 is likely to fit. As a rule of thumb, 80% of the total
amount of memory is a good guess. If the problem size you pick is too large,
swapping will occur, and the performance will drop. If multiple processes are
spawned on each node (say you have 2 processors per node), what counts is the
available amount of memory to each process.

HPL uses the block size NB for the data distribution as well as for the
computational granularity. From a data distribution point of view, the smallest
NB, the better the load balance. You definitely want to stay away from very
large values of NB. From a computation point of view, a too small value of
NB may limit the computational performance by a large factor because almost
no data reuse will occur in the highest level of the memory hierarchy. The
number of messages will also increase. Efficient matrix-multiply routines are
often internally blocked. Small multiples of this blocking factor are likely to be
good block sizes for HPL. The bottom line is that “good” block sizes are almost
always in the [32 .. 256] interval. The best values depend on the computation

3



/ communication performance ratio of your system. To a much less extent, the
problem size matters as well. Say for example, you empirically found that 44
was a good block size with respect to performance. 88 or 132 are likely to give
slightly better results for large problem sizes because of a slightly higher flop
rate.

The process grid dimensions (PxQ) depends on the physical interconnection
network you have. Assuming a Infiniband mesh or a switch, HPL “likes” a 1:k
ratio with k in {1..3}. In other words, P and Q should be approximately equal,
with Q slightly larger than P. Examples: 2 x 2, 2 x 4, 2 x 5, 3 x 4, 4 x 4, 4 x 6,
5 x 6, 4 x 8 ... If you are running on a simple Ethernet network, there is only
one wire through which all the messages are exchanged. On such a network,
the performance and scalability of HPL is strongly limited and very flat process
grids are likely to be the best choices: 1 x 4, 1 x 8, 2 x 4.

4 Reading

These readings go into more depth than you need for this project. Focus on
exploring N, NB, and PxQ. If you want to vary other parameters you a free to
do so, but make sure you have results for the simple things first.

This paper discusses LINPACK and HPL. Use it to get an overview of what
LINPACK and HPL are for. The LINPACK Benchmark: Past, Present, and
Future

This page has an overview of the algorithm and how the work is distributed
across nodes: HPL Algorithm.

This paper has many tables showing the HPL performance of various clusters
and an relatively concise description of HPL in the introduction. Performance
of Various Computers Using Standard Linear Equations Software

5 Code

Pull this git repo: https://github.com/gmfricke/HPL. The repository contains
an HPL template and Slurm scripts for Wheeler and Hopper.

6 Report Format

Your report will be no more than 5 pages. You should illustrate your obser-
vations with plots like those from the homeworks. In particular, you should
attempt to illustrate how performance depends on the parameters you vary,
with GFLops on the y-axis (independent variable) and the parameter you are
interested in on the x-axis (dependent variable).

I will share a report template with each team.

4

https://www.netlib.org/utk/people/JackDongarra/PAPERS/hplpaper.pdf
https://www.netlib.org/utk/people/JackDongarra/PAPERS/hplpaper.pdf
https://www.netlib.org/benchmark/hpl/algorithm.html
https://www.netlib.org/benchmark/performance.pdf
https://www.netlib.org/benchmark/performance.pdf
https://github.com/gmfricke/HPL


7 Extra Credit

The performance of each undergraduate team on the HPL benchmark will be
ranked. Members of the team with the highest verified mean performance across
the two clusters will receive 3 percentage points of extra credit on their final
grade for the course. The second ranked team will receive 2 points, and the 3rd
ranked team will receive 1 point.

5


	Project Assistant Meetings
	Introduction
	High Level Overview of HPL

	Tuning HPL
	Reading
	Code
	Report Format
	Extra Credit

