Definition
Examples
Guess and Check

Lecture 9: Recurrence Relations

Matthew Fricke

July 15, 2013
Lecture 9:

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation Method

The Fibonacci Sequence
Golden Ratio Gambler's Ruin

This Lecture

1 Definition
(2) Examples

3 Guess and Check
4 Binary Search
(5) Characteristic Equation Method
(6) The Fibonacci Sequence
(7) Golden Ratio

8 Gambler's Ruin

Lecture 9: Recurrence Relations

Matthew
Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence
Golden Ratio
Gambler's Ruin

What are Recurrence Relations?

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples
Guess and Check

Binary Search
Characteristic
Equation Method

The Fibonacci Sequence

What are Recurrence Relations?

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential. Lecture 9 : Recurrence Relations

What are Recurrence Relations?

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative. Lecture 9 : Recurrence Relations Fricke

Definition

Examples

What are Recurrence Relations?

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative.
- The discrete version of a differential equation is a difference equation.

What are Recurrence Relations?

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative.
- The discrete version of a differential equation is a difference equation.
- Sometimes people call recurrence relations difference equations but really difference equations are just a type of recurrence relation.

What are Recurrence Relations?

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative.
- The discrete version of a differential equation is a difference equation.
- Sometimes people call recurrence relations difference equations but really difference equations are just a type of recurrence relation.
- Some of the techniques for solving recurrence relations are almost the same as those used to solve differential equations.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples
Guess and Check

Examples of Recursion Relations

Towers of Hanoi

$$
\begin{aligned}
& T_{0}=0 \\
& T_{n}=2 T_{n-1}+1
\end{aligned}
$$

Fibonacci Sequence

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

Compound Interest

Stirling Numbers

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence
Golden Ratio
Gambler's Ruin

Towers of Hanoi

- Recall that the recurrence T_{n} represents the amount of work needed to solve the problem.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation Method

Towers of Hanoi

- Recall that the recurrence T_{n} represents the amount of work needed to solve the problem.
- We solved the problem by figuring out a general statement characterizing the amount of work needed to move one disk from one peg to another: $2(n-1)+1$ where n is the number of disks.

Lecture 9:

Towers of Hanoi

- Recall that the recurrence T_{n} represents the amount of work needed to solve the problem.
- We solved the problem by figuring out a general statement characterizing the amount of work needed to move one disk from one peg to another: $2(n-1)+1$ where n is the number of disks.
- Then we wrote out the sequence values for $T_{0}, T_{1}, T_{2}, T_{3}, T_{4} \ldots=0,1,3,7,15 \ldots$

Towers of Hanoi

- Recall that the recurrence T_{n} represents the amount of work needed to solve the problem.
- We solved the problem by figuring out a general statement characterizing the amount of work needed to move one disk from one peg to another: $2(n-1)+1$ where n is the number of disks.
- Then we wrote out the sequence values for $T_{0}, T_{1}, T_{2}, T_{3}, T_{4} \ldots=0,1,3,7,15 \ldots$
- Guessed that the formula was $2^{n}-1$

Towers of Hanoi

- Then we wrote out the sequence values for $T_{0}, T_{1}, T_{2}, T_{3}, T_{4} \ldots=0,1,3,7,15 \ldots$
- Guessed that the formula was $2^{n}-1$
- ... and proved it with mathematical induction.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci
Sequence
Golden Ratio
Gambler's Ruin

Binary Search Example

- We are going to come up with an algorithm to solve a search problem.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation

Binary Search Example

- We are going to come up with an algorithm to solve a search problem.
- then analyse the amount of work needed to search using recurrence relations.

Lecture 9:

Binary Search Example

- We are going to come up with an algorithm to solve a search problem.
- then analyse the amount of work needed to search using recurrence relations.
- Given a sorted array of integers how might we determine if a particular integer is in the array?

Lecture 9: Recurrence Relations Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation Method

Binary Search Example

1: function BinSearch(key, array, start, end)
2: \quad if end \leq start then return FALSE
4: else
5: \quad mid $\leftarrow \frac{\text { end }+ \text { start }}{2}$
6:
7:
8:
9 :

11:
if key $=\operatorname{array}[m i d]$ then return TRUE
else if key \leq array[mid] then return BinSearch(key, array, start, mid) else if key > array[mid] then return BinSearch(key, array, mid, end)

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence
Golden Ratio
Gambler's Ruin

Binary Search Example

- Let's define a recurrence relation $T(n)$ (T for time) that describes the amount of work to be done by BinarySearch.

Binary Search Example

- Let's define a recurrence relation $T(n)$ (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).

Binary Search Example

- Let's define a recurrence relation $T(n)$ (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.

Binary Search Example

- Let's define a recurrence relation $T(n)$ (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.
- Notice that due to Line 5 in the algorithm each recursive call only needs to work on half the array that the previous call worked on.

Binary Search Example

- Let's define a recurrence relation $T(n)$ (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.
- Notice that due to Line 5 in the algorithm each recursive call only needs to work on half the array that the previous call worked on.
- So we guess that $T(n)=T\left(\frac{n}{2}\right)+1, n=$ the size of the array.

Binary Search Example

- Let's define a recurrence relation $T(n)$ (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.
- Notice that due to Line 5 in the algorithm each recursive call only needs to work on half the array that the previous call worked on.
- So we guess that $T(n)=T\left(\frac{n}{2}\right)+1, n=$ the size of the array.
- Base case: $T(2)=1$

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence
Golden Ratio
Gambler's Ruin

Binary Search Example

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Binary Search Example

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: $1,2,4,8,16 \ldots$

Binary Search Example

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: $1,2,4,8,16 \ldots$..
- We recognize this as 2^{n} which is an exponential function.

Binary Search Example

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: $1,2,4,8,16 \ldots$
- We recognize this as 2^{n} which is an exponential function.
- If we halve the values at each step ... 16, 8, 4, 2, 1 we are doing the inverse.

Binary Search Example

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: $1,2,4,8,16 \ldots$
- We recognize this as 2^{n} which is an exponential function.
- If we halve the values at each step ... $16,8,4,2,1$ we are doing the inverse.
- The inverse of an exponential function is the logarithmic function.

Binary Search Example

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: $1,2,4,8,16 \ldots$
- We recognize this as 2^{n} which is an exponential function.
- If we halve the values at each step ... $16,8,4,2,1$ we are doing the inverse.
- The inverse of an exponential function is the logarithmic function.
- Therefore we guess that that $T(n)=\log _{2}(n)$

Binary Search Example

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: $1,2,4,8,16 \ldots$
- We recognize this as 2^{n} which is an exponential function.
- If we halve the values at each step ... $16,8,4,2,1$ we are doing the inverse.
- The inverse of an exponential function is the logarithmic function.
- Therefore we guess that that $T(n)=\log _{2}(n)$
- Base case: $T(2)=1$

Binary Search Example

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence
Golden Ratio
Gambler's Ruin

- The next step is to try and prove our guess was right with mathematical induction.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci
Sequence
Golden Ratio
Gambler's Ruin

Binary Search Example

- The next step is to try and prove our guess was right with mathematical induction.
- Proof by strong induction:

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation Method

The Fibonacci Sequence
Golden Ratio
Gambler's Ruin

Binary Search Example

- The next step is to try and prove our guess was right with mathematical induction.
- Proof by strong induction:
- Base case $n=2: \log _{2}(2 \cdot 2)=1$, QED for Base Case

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic Equation Method

Binary Search Example

- The next step is to try and prove our guess was right with mathematical induction.
- Proof by strong induction:
- Base case $n=2: \log _{2}(2 \cdot 2)=1$, QED for Base Case
- Inductive Step: $\forall j<k, T(j)=T\left(\frac{j}{2}\right)+1=\log _{2}(j) \Longrightarrow$ $T(k)=T\left(\frac{k}{2}\right)+1=\log _{2}(k)$
Lecture 9:

```
Definition
```

Examples
Guess and
Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence
Golden Ratio
Gambler's
Ruin

Binary Search Example

- Proof of the inductive step:

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci
Sequence
Golden Ratio
Gambler's Ruin

Binary Search Example

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence
Golden Ratio
Gambler's Ruin

Binary Search Example

- Proof of the inductive step:
- $T(k)=T\left(\frac{k}{2}\right)+1$ this is a premise.
- $\frac{k}{2}<k \Longrightarrow T\left(\frac{k}{2}\right)=\log _{2}\left(\frac{k}{2}\right)$ induction hypothesis.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

- Proof of the inductive step:
- $T(k)=T\left(\frac{k}{2}\right)+1$ this is a premise.
- $\frac{k}{2}<k \Longrightarrow T\left(\frac{k}{2}\right)=\log _{2}\left(\frac{k}{2}\right)$ induction hypothesis.
- $T\left(\frac{k}{2}\right)=\log _{2} \frac{k}{2}=\log _{2} k-\log _{2} 2=\log _{2} k-1$ by log rules.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic Equation Method

Binary Search Example

- Proof of the inductive step:
- $T(k)=T\left(\frac{k}{2}\right)+1$ this is a premise.
- $\frac{k}{2}<k \Longrightarrow T\left(\frac{k}{2}\right)=\log _{2}\left(\frac{k}{2}\right)$ induction hypothesis.
- $T\left(\frac{k}{2}\right)=\log _{2} \frac{k}{2}=\log _{2} k-\log _{2} 2=\log _{2} k-1$ by log rules.
- $T(k)=T\left(\frac{k}{2}\right)+1=\left\{\log _{2}(k)-1\right\}+1$ by substitution.

Binary Search Example

- Proof of the inductive step:
- $T(k)=T\left(\frac{k}{2}\right)+1$ this is a premise.
- $\frac{k}{2}<k \Longrightarrow T\left(\frac{k}{2}\right)=\log _{2}\left(\frac{k}{2}\right)$ induction hypothesis.
- $T\left(\frac{k}{2}\right)=\log _{2} \frac{k}{2}=\log _{2} k-\log _{2} 2=\log _{2} k-1$ by log rules.
- $T(k)=T\left(\frac{k}{2}\right)+1=\left\{\log _{2}(k)-1\right\}+1$ by substitution.
- $T(k)=\log _{2}(k)$ by simplification of $-1+1$. QED

Lecture 9: Recurrence Relations
 Binary Search Example

- Proofs are often presented in the opposite order to which they were developed.

Lecture 9: Recurrence Relations
 Binary Search Example

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Binary Search Example

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k)=\log _{2}(k)$

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Binary Search Example

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k)=\log _{2}(k)$
- We want to make $T(k)=T(k / 2)+1=\log _{2}(x)$

Binary Search Example

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k)=\log _{2}(k)$
- We want to make $T(k)=T(k / 2)+1=\log _{2}(x)$
- We have that it is true for everything less than k by strong induction.

Binary Search Example

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k)=\log _{2}(k)$
- We want to make $T(k)=T(k / 2)+1=\log _{2}(x)$
- We have that it is true for everything less than k by strong induction.
- So solve for $x: \log _{2}(x)=\log _{2}(k)-1 \Longrightarrow$

$$
\log _{2}(x)-\log _{2}(2) \Longrightarrow \log _{2}(x)=\log _{2}(k / 2)
$$

Binary Search Example

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k)=\log _{2}(k)$
- We want to make $T(k)=T(k / 2)+1=\log _{2}(x)$
- We have that it is true for everything less than k by strong induction.
- So solve for $x: \log _{2}(x)=\log _{2}(k)-1 \Longrightarrow$ $\log _{2}(x)-\log _{2}(2) \Longrightarrow \log _{2}(x)=\log _{2}(k / 2)$
- $\therefore x=k / 2$ Since $k / 2$ is less than k we can use proof by strong induction.

Lecture 9: Recurrence Relations

Characteristic Equation Method

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems. Lecture 9 . Recurrence Relations

Characteristic Equation Method

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.

Characteristic Equation Method

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the Characteristic Equation of a recurrence.

Characteristic Equation Method

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the Characteristic Equation of a recurrence.
- (The term Characteristic Equation comes from Linear Algebra)

Characteristic Equation Method

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the Characteristic Equation of a recurrence.
- (The term Characteristic Equation comes from Linear Algebra)
- The method works on second-order linear recurrence relations with constant coefficients. Annihilators generalize this method to any order.

Characteristic Equation Method

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the Characteristic Equation of a recurrence.
- (The term Characteristic Equation comes from Linear Algebra)
- The method works on second-order linear recurrence relations with constant coefficients. Annihilators generalize this method to any order.
- Second order recurrence: refers to two previous values of the recurrence, e.g. $T_{n}=T_{n-1}+T_{n-2}$ Recurrence Relations

Matthew Fricke

Determining the Characteristic Equation

 relation with constant coefficients is a recurrence relation of the form:$a_{k}=A \cdot a_{k-1}+B \cdot a_{k-2}, \exists m \in \mathbb{Z} \ni \forall k \in \mathbb{Z}, k \geq m$, where A and B are fixed real numbers with $B \neq 0$.
(The part with m and k just allows for there to be some base cases.)

Lecture 9: Recurrence Relations

Matthew Fricke

Determining the Characteristic Equation

- A second-order linear homogeneous recurrence relation is satisfied by the sequence $1, t, t^{2}, t^{3}, t^{4} \ldots, t^{n}$

Lecture 9: Recurrence Relations

Matthew Fricke

Determining the Characteristic Equation

- A second-order linear homogeneous recurrence relation is satisfied by the sequence $1, t, t^{2}, t^{3}, t^{4} \ldots, t^{n}$
- i.e. $t^{k}=A \cdot t^{k-1}+B \cdot t^{t-2}$ because each term is equal to A times the previous term plus B times the term before that.

Lecture 9: Recurrence Relations

Matthew Fricke

Determining the Characteristic Equation

- A second-order linear homogeneous recurrence relation is satisfied by the sequence $1, t, t^{2}, t^{3}, t^{4} \ldots, t^{n}$
- i.e. $t^{k}=A \cdot t^{k-1}+B \cdot t^{t-2}$ because each term is equal to A times the previous term plus B times the term before that.
- Dividing by t^{k-2} gives $t^{2}-A t-B=0$.

Determining the Characteristic Equation

- A second-order linear homogeneous recurrence relation is satisfied by the sequence $1, t, t^{2}, t^{3}, t^{4} \ldots, t^{n}$
- i.e. $t^{k}=A \cdot t^{k-1}+B \cdot t^{t-2}$ because each term is equal to A times the previous term plus B times the term before that.
- Dividing by t^{k-2} gives $t^{2}-A t-B=0$.
- This is true in general. A sequence of the form t^{k} only satisfies the 2 nd order homogeneous recurrence iff it satisfies $t^{2}-A t-B=0$.

Determining the Characteristic
 Equation

- A second-order linear homogeneous recurrence relation is satisfied by the sequence $1, t, t^{2}, t^{3}, t^{4} \ldots, t^{n}$
- i.e. $t^{k}=A \cdot t^{k-1}+B \cdot t^{t-2}$ because each term is equal to A times the previous term plus B times the term before that.
- Dividing by t^{k-2} gives $t^{2}-A t-B=0$.
- This is true in general. A sequence of the form t^{k} only satisfies the 2 nd order homogeneous recurrence iff it satisfies $t^{2}-A t-B=0$.
- We call this equation the Characteristic Equation.
Lecture 9:
Recurrence
Relations
Matthew
- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$

Binary Search
Characteristic
Equation Method

The Fibonacci Sequence

Golden Ratio Ruin

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Example

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
- This is of the form $a_{k}=1 \cdot a_{k-1}+B \cdot a_{k-2}$ where $A=1$, and $B=2$

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

 CheckBinary Search
Characteristic
Equation Method

The Fibonacci Sequence

Golden Ratio
Gambler's Ruin

Example

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
- This is of the form $a_{k}=1 \cdot a_{k-1}+B \cdot a_{k-2}$ where $A=1$, and $B=2$
- So the characteristic equation $t^{2}-A t-B=0$ is $t^{2}-t-2=0$.

Lecture 9:

Example

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
- This is of the form $a_{k}=1 \cdot a_{k-1}+B \cdot a_{k-2}$ where $A=1$, and $B=2$
- So the characteristic equation $t^{2}-A t-B=0$ is $t^{2}-t-2=0$.
- Now we need to find t so that the characteristic equation is satisfied, i.e. equal to zero.

Lecture 9:

Example

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
- This is of the form $a_{k}=1 \cdot a_{k-1}+B \cdot a_{k-2}$ where $A=1$, and $B=2$
- So the characteristic equation $t^{2}-A t-B=0$ is $t^{2}-t-2=0$.
- Now we need to find t so that the characteristic equation is satisfied, i.e. equal to zero.
- Recall all the fun you had finding roots of quadratic formulas in Algebra I!
Lecture 9:
Recurrence
Relations
Matthew
Fricke
Definition
Examples
Guess and
Check
Binary Search
Characteristic
Equation
Method
The Fibonacci
Sequence
Golden Ratio
Gambler's
Ruin
- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
Lecture 9:
Recurrence
Relations
Matthew

Example

Matthew
Fricke

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
Binary Search
Characteristic
Equation
Method
The Fibonacci
Sequence
Golden Ratio
Gambler's
Ruin Fricke
Definition
Examples
Guess and
Check
- $t^{2}-t-2=(t-2)(t+1)$

Definition
Examples
Guess and Check

Example

Matthew Fricke

Definition

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
- $t^{2}-t-2=(t-2)(t+1)$

Binary Search

- The roots are 2 and -1 .

Characteristic
Equation
Method
The Fibonacci Sequence

Golden Ratio

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples
Guess and Check

Binary Search
Characteristic
Equation Method

The Fibonacci Sequence

Golden Ratio
Gambler's Ruin

Example

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
- $t^{2}-t-2=(t-2)(t+1)$
- The roots are 2 and -1 .
- So the only sequences of the form t^{n} that satisfy the recurrence are:

$$
\begin{aligned}
& r_{n}=2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4} \ldots \text { and } \\
& s_{n}=(-1)^{0},(-1)^{1},(-1)^{2},(-1)^{3},(-1)^{4} \ldots
\end{aligned}
$$

Example

Matthew Fricke

- Find a sequence that satisfies $a_{k}=a_{k-1}+2 a_{k-2}$
- $t^{2}-t-2=(t-2)(t+1)$
- The roots are 2 and -1 .
- So the only sequences of the form t^{n} that satisfy the recurrence are:
$r_{n}=2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4} \ldots$ and
$s_{n}=(-1)^{0},(-1)^{1},(-1)^{2},(-1)^{3},(-1)^{4} \ldots$
- AND any linear combination of these sequences satisfies the recurrence: $a_{n}=C \cdot r_{n}+D \cdot s_{n}, C$ and D can be any numbers.

Distinct Roots Theorem

All that leads us to the Distinct Roots Theorem. Suppose a sequence $a_{0}, a_{1}, a_{2}, \ldots$ satisfies a recurrence relation $a_{k}=A \cdot a_{k-1}+B \cdot a_{k-1}$ for some real numbers A and B and k >2.
Then $a_{0}, a_{1}, a_{2}, \ldots$ satisfies the closed form $a_{n}=C \cdot r^{n}+D \cdot s^{n}$ if the characteristic equation $t^{2}-A t-B=0$ has two distinct roots r and s. Where C and D are solutions to the system of equations $a_{0}=C \cdot r^{0}+D \cdot s^{0}$ and $a_{1}=C \cdot r^{1}+D \cdot s^{1}$. Equivalently $a_{0}=C+D$ and $a_{1}=C \cdot r+D \cdot s$

Single Root Theorem

and the Single Root Theorem. Suppose a sequence $a_{0}, a_{1}, a_{2}, \ldots$ satisfies a recurrence relation
$a_{k}=A \cdot a_{k-1}+B \cdot a_{k-1}$ for some real numbers A and B and k >2.
Then $a_{0}, a_{1}, a_{2}, \ldots$ satisfies the closed form
$a_{n}=C \cdot r^{n}+n D \cdot r^{n}$ if the characteristic equation $t^{2}-A t-B=0$ has a single (perhaps repeated) root r. Where C and D are solutions to the system of equations $a_{0}=C \cdot r^{0}+n D \cdot r^{0}$ and $a_{1}=C \cdot r^{1}+n D \cdot r^{1}$. Equivalently $a_{0}=C+D$ and $a_{1}=C \cdot r+n D \cdot r$.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence

Golden Ratio
Gambler's Ruin

Fibonacci Sequence

- Now we are equipped to solve recurrences like the Fibonacci sequence.

Lecture 9:

Fibonacci Sequence

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_{n}=F_{n-1}+F_{n-2}$, with base cases $F_{0}=0, F_{1}=1$.

Lecture 9:

Fibonacci Sequence

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_{n}=F_{n-1}+F_{n-2}$, with base cases $F_{0}=0, F_{1}=1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: $A=1, B=1$

Lecture 9:

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_{n}=F_{n-1}+F_{n-2}$, with base cases $F_{0}=0, F_{1}=1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: $A=1, B=1$
- The characteristic equation is $t^{2}-t-1=0$

Fibonacci Sequence

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_{n}=F_{n-1}+F_{n-2}$, with base cases $F_{0}=0, F_{1}=1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: $A=1, B=1$
- The characteristic equation is $t^{2}-t-1=0$
- Solving this equation for t :
$t=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$ for any quadratic polynomial: $a t^{2}+b^{t}+c=0$ (Quadratic Formula).

Fibonacci Sequence

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_{n}=F_{n-1}+F_{n-2}$, with base cases $F_{0}=0, F_{1}=1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: $A=1, B=1$
- The characteristic equation is $t^{2}-t-1=0$
- Solving this equation for t :
$t=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$ for any quadratic polynomial: $a t^{2}+b^{t}+c=0$ (Quadratic Formula).
- $t=\frac{1 \pm \sqrt{1-4(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}$. Two distinct roots.

Lecture 9: Recurrence Relations

Matthew Fricke

- $t=\frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_{1} and ρ_{2}.

Fibonacci Sequence

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation Method

The Fibonacci Sequence

Golden Ratio

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence

Golden Ratio
Gambler's Ruin

Fibonacci Sequence

- $t=\frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_{1} and ρ_{2}.
- so by the distinct root theorem:
$F_{n}=C\left(\frac{1+\sqrt{5}}{2}\right)^{n}+D\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Lecture 9:

Fibonacci Sequence

- $t=\frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_{1} and ρ_{2}.
- so by the distinct root theorem:
$F_{n}=C\left(\frac{1+\sqrt{5}}{2}\right)^{n}+D\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
- Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).

Lecture 9: Recurrence Relations

Matthew Fricke

Definition
Examples
Guess and Check

Binary Search
Characteristic Equation Method

The Fibonacci Sequence

Fibonacci Sequence

- $t=\frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_{1} and ρ_{2}.
- so by the distinct root theorem:
$F_{n}=C\left(\frac{1+\sqrt{5}}{2}\right)^{n}+D\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
- Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).
- The base cases are $F_{0}=0$ and $F_{1}=1$.

Lecture 9:

Fibonacci Sequence

- $t=\frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_{1} and ρ_{2}.
- so by the distinct root theorem:
$F_{n}=C\left(\frac{1+\sqrt{5}}{2}\right)^{n}+D\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
- Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).
- The base cases are $F_{0}=0$ and $F_{1}=1$.
- So we need to solve the system of equations:

$$
\begin{aligned}
& F_{1}=1=C+D \\
& F_{2}=1=C \rho_{1}+D \rho_{2}
\end{aligned}
$$

Fibonacci Sequence

- $t=\frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_{1} and ρ_{2}.
- so by the distinct root theorem:
$F_{n}=C\left(\frac{1+\sqrt{5}}{2}\right)^{n}+D\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
- Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).
- The base cases are $F_{0}=0$ and $F_{1}=1$.
- So we need to solve the system of equations:
$F_{1}=1=C+D$
$F_{2}=1=C \rho_{1}+D \rho_{2}$
- Solving this system gives $C=\frac{1+\sqrt{5}}{2 \sqrt{5}}, D=\frac{-1+\sqrt{5}}{2 \sqrt{5}}$ One way to solve this system using the method of partial fractions.
If you know this method the setup is:
$F(z)=\frac{z}{1-z-z^{2}}=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\rho_{1} z}-\frac{1}{1-\rho_{2} z}\right)$

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples
Guess and Check

Binary Search
Characteristic
Equation
Method
The Fibonacci Sequence

Golden Ratio
Gambler's Ruin

Fibonacci Sequence

- So we have solved the Fibonacci recurrence:

$$
F_{n}=\frac{1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{-1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Fibonacci Sequence

- So we have solved the Fibonacci recurrence:

$$
F_{n}=\frac{1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{-1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

- Seems strange that this sequence is made up of integers but we have $\sqrt{5}$ throughout.

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Fibonacci Sequence

- So we have solved the Fibonacci recurrence:

$$
F_{n}=\frac{1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{-1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

- Seems strange that this sequence is made up of integers but we have $\sqrt{5}$ throughout.
- It turns out that this value $\frac{1+\sqrt{5}}{2}$ is very special. It is called the Golden Ratio or Golden Mean and has the symbol Φ

Lecture 9:

Fibonacci Sequence

- So we have solved the Fibonacci recurrence:

$$
F_{n}=\frac{1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\frac{-1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

- Seems strange that this sequence is made up of integers but we have $\sqrt{5}$ throughout.
- It turns out that this value $\frac{1+\sqrt{5}}{2}$ is very special. It is called the Golden Ratio or Golden Mean and has the symbol Φ
- During the Renaissance Φ was known as the Divine Proportion

Lecture 9: Recurrence Relations

Matthew

Fricke

Definition

Examples
Guess and Check

Binary Search
Characteristic Equation Method

The Fibonacci

Sequence

Golden Ratio
Gambler's
Ruin

The Golden Ratio

Gambler's Ruin

Consider a game of chance. You (the player) will win $\$ 1$ or lose $\$ 1$ depending on the outcome of a coin toss. If the coin comes up heads you win if it comes up tails you lose.

You decide to play until one of two conditions are met: 1) You run out of money.
2) or you have won a target amount of money, M.

The question we would like to answer is the probability of you going bust given a starting amount of money and the target value, M.

Gambler's Ruin

- Notice that the amount of money you have in the first round is equal to your starting amount.
- Otherwise the amount of money you have depends on the amount of money you had previous round coupled with the outcome of the previous coin toss.
- So we have a sequence of values for the probability of going bust P_{n} given $\$ n$ that depends on previous values of P_{k}.
- In other words we have a recurrence that we can try to define and solve.

Gambler's Ruin

- The probability of a player having $\$ k$, i.e. P_{k} transitioning into P_{k-1} (losing a dollar) is $\frac{1}{2}$.
- The probability of transitioning to state P_{k+1} (winning a dollar) is also $\frac{1}{2}$.
- These outcomes are related by xor so we can use the addition rule of discrete probability.
- Therefore $P_{k}=\frac{1}{2} P_{k-1}+\frac{1}{2} P_{k+1}$.

Lecture 9:

- Therefore $P_{k}=\frac{1}{2} P_{k-1}+\frac{1}{2} P_{k+1}$.
- Rewriting in a form we are more used to: $0=-2 P_{k}+P_{k-1}+P_{k+1}$.
- Having the coefficient 2 on P_{k} is awkward but we can shift the sequence index by -1 .
- $0=-2 P_{k-1}+P_{k-2}+P_{k}$.
- Rewriting: $P_{k}=2 P_{k-1}-P_{k-2}$.

Gambler's Ruin

- Now we have a second order homogeneous recurrence with constant coefficients.
- We know how to solve those using the Characteristic Equation method.
- What about the base cases though. Here the sequence ends under two circumstances:
- The player wins a total of $\$ M$ or the player loses all their money.
- So the base cases (more like boundary conditions in this case) are $P_{M}=0$ and $P_{0}=1$.
- Since the Probability of going bust when you have $\$ 0$ is 1 . The Probability of going bust when you have $\$ M$ is 0 .

Gambler's Ruin

Matthew Fricke

- Now we have everything we need to solve the recurrence.
- Characteristic Equation: $t^{2}-2 t+1=0$ since $A=2$ and $B=-1$ in $P_{k}=A P_{k-1}+B P_{k-2}$ and the characteristic equation is $t^{2}-A t+B=0$.
- Now we find the roots of the characteristic polynomial.
- Factoring: $(t-1)(t-1)$ The repeated root is $\rho=1$.
- Using the single root theorem: $P_{n}=C(1)^{n}+n D(1)^{n}$.
- Solving for C and D :
$P_{0}=1=C+(0) D$
$P_{M}=0=C+(M) D$
$\therefore C=1$
$\therefore D=-\frac{1}{M}$
$\therefore P_{n}=1-n \frac{1}{M}$
$\therefore P_{n}=\frac{M}{M}-n \frac{1}{M}=\frac{M-n}{M}$

Gambler's Ruin

- Now we have a closed form for the recurrence and can answer the question for any target amount and starting amount of money.
- Example: What is the probability of going bust if you start with $\$ 30$ and your goal is $\$ 120$.
- Answer: $M=120, n=30 . P_{3} 0=\frac{120-30}{120}=75 \%$.
- Another Examples: $M=500, n=50$. $P_{5} 0=\frac{500-50}{500}=90 \%$ chance of going bust before winning $\$ 500$.

