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What are Recurrence Relations?

• A recurrence relation is an equation that defines a value in
a sequence using previous values in the sequence.

• Recurrence relations are closely tied to differential
equations because they are both self referential.

• A differential equation relates a function to its own
derivative.

• The discrete version of a differential equation is a
difference equation.

• Sometimes people call recurrence relations difference
equations but really difference equations are just a type of
recurrence relation.

• Some of the techniques for solving recurrence relations are
almost the same as those used to solve differential
equations.
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Examples of Recursion Relations

Towers of Hanoi T0 = 0

Tn = 2Tn−1 + 1

Fibonacci Sequence F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2

Compound Interest

Stirling Numbers
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Towers of Hanoi

• Recall that the recurrence Tn represents the amount of
work needed to solve the problem.

• We solved the problem by figuring out a general statement
characterizing the amount of work needed to move one
disk from one peg to another: 2(n − 1) + 1 where n is the
number of disks.

• Then we wrote out the sequence values for
T0,T1,T2,T3,T4 . . . = 0, 1, 3, 7, 15 . . .

• Guessed that the formula was 2n − 1

• ... and proved it with mathematical induction.
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Binary Search Example

• We are going to come up with an algorithm to solve a
search problem.

• then analyse the amount of work needed to search using
recurrence relations.

• Given a sorted array of integers how might we determine if
a particular integer is in the array?
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Binary Search Example

1: function BinSearch(key, array, start, end)
2: if end ≤ start then
3: return FALSE
4: else
5: mid ← end+start

2
6: if key = array[mid] then
7: return TRUE
8: else if key ≤ array[mid] then
9: return BinSearch(key, array, start, mid)

10: else if key > array[mid] then
11: return BinSearch(key, array, mid, end)
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Binary Search Example

• Let’s define a recurrence relation T (n) (T for time) that
describes the amount of work to be done by BinarySearch.

• We are thinking about the work done in the worst case
(we might find the key on the first try).

• Typically “work” means operations or memory accesses.

• Notice that due to Line 5 in the algorithm each recursive
call only needs to work on half the array that the previous
call worked on.

• So we guess that T (n) = T (n2 ) + 1, n = the size of the
array.

• Base case: T (2) = 1



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Binary Search Example

• Let’s define a recurrence relation T (n) (T for time) that
describes the amount of work to be done by BinarySearch.

• We are thinking about the work done in the worst case
(we might find the key on the first try).

• Typically “work” means operations or memory accesses.

• Notice that due to Line 5 in the algorithm each recursive
call only needs to work on half the array that the previous
call worked on.

• So we guess that T (n) = T (n2 ) + 1, n = the size of the
array.

• Base case: T (2) = 1



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Binary Search Example

• Let’s define a recurrence relation T (n) (T for time) that
describes the amount of work to be done by BinarySearch.

• We are thinking about the work done in the worst case
(we might find the key on the first try).

• Typically “work” means operations or memory accesses.

• Notice that due to Line 5 in the algorithm each recursive
call only needs to work on half the array that the previous
call worked on.

• So we guess that T (n) = T (n2 ) + 1, n = the size of the
array.

• Base case: T (2) = 1



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Binary Search Example

• Let’s define a recurrence relation T (n) (T for time) that
describes the amount of work to be done by BinarySearch.

• We are thinking about the work done in the worst case
(we might find the key on the first try).

• Typically “work” means operations or memory accesses.

• Notice that due to Line 5 in the algorithm each recursive
call only needs to work on half the array that the previous
call worked on.

• So we guess that T (n) = T (n2 ) + 1, n = the size of the
array.

• Base case: T (2) = 1



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Binary Search Example

• Let’s define a recurrence relation T (n) (T for time) that
describes the amount of work to be done by BinarySearch.

• We are thinking about the work done in the worst case
(we might find the key on the first try).

• Typically “work” means operations or memory accesses.

• Notice that due to Line 5 in the algorithm each recursive
call only needs to work on half the array that the previous
call worked on.

• So we guess that T (n) = T (n2 ) + 1, n = the size of the
array.

• Base case: T (2) = 1



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Binary Search Example

• Let’s define a recurrence relation T (n) (T for time) that
describes the amount of work to be done by BinarySearch.

• We are thinking about the work done in the worst case
(we might find the key on the first try).

• Typically “work” means operations or memory accesses.

• Notice that due to Line 5 in the algorithm each recursive
call only needs to work on half the array that the previous
call worked on.

• So we guess that T (n) = T (n2 ) + 1, n = the size of the
array.

• Base case: T (2) = 1



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Binary Search Example

• We would like to put the recurrence in closed form. That
is we would like to solve the recurrence.

• Intuitively if we have a sequence that doubles at each step
we get: 1, 2, 4, 8, 16 . . ..

• We recognize this as 2n which is an exponential function.

• If we halve the values at each step . . . 16, 8, 4, 2, 1 we are
doing the inverse.

• The inverse of an exponential function is the logarithmic
function.

• Therefore we guess that that T (n) = log2(n)

• Base case: T (2) = 1
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Binary Search Example

• The next step is to try and prove our guess was right with
mathematical induction.

• Proof by strong induction:

• Base case n = 2: log2(2 · 2) = 1, QED for Base Case

• Inductive Step: ∀j < k ,T (j) = T ( j
2 ) + 1 = log2(j) =⇒

T (k) = T (k2 ) + 1 = log2(k)
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Binary Search Example

• Proof of the inductive step:

• T (k) = T (k2 ) + 1 this is a premise.

• k
2 < k =⇒ T (k2 ) = log2(k2 ) induction hypothesis.

• T (k2 ) = log2
k
2 = log2 k − log2 2 = log2 k − 1 by log rules.

• T (k) = T (k2 ) + 1 = {log2(k)− 1}+ 1 by substitution.

• T (k) = log2(k) by simplification of −1 + 1. QED
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• T (k2 ) = log2
k
2 = log2 k − log2 2 = log2 k − 1 by log rules.

• T (k) = T (k2 ) + 1 = {log2(k)− 1}+ 1 by substitution.
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• Proofs are often presented in the opposite order to which
they were developed.

• The progression of thought for this proof is:

• Assume what we want is true. Then T (k) = log2(k)

• We want to make T (k) = T (k/2) + 1 = log2(x)

• We have that it is true for everything less than k by strong
induction.

• So solve for x : log2(x) = log2(k)− 1 =⇒
log2(x)− log2(2) =⇒ log2(x) = log2(k/2)

• ∴ x = k/2 Since k/2 is less than k we can use proof by
strong induction.
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Characteristic Equation Method

• Guess-and-Check is a very common approach (variations
are method of iteration and substitution). Most useful
when you already have enough experience and intuition to
be able to look at a recurrence and know the answer from
comparison with other similar problems.

• More analytical methods include The Master Method,
Recursion Trees, and Annihilators.

• We will learn a method using the Characteristic Equation
of a recurrence.

• (The term Characteristic Equation comes from Linear
Algebra)

• The method works on second-order linear recurrence
relations with constant coefficients. Annihilators generalize
this method to any order.

• Second order recurrence: refers to two previous values of
the recurrence, e.g. Tn = Tn−1 + Tn−2
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Determining the Characteristic
Equation

Definition: A second-order linear homogeneous recurrence
relation with constant coefficients is a recurrence relation of
the form:
ak = A · ak−1 + B · ak−2,∃m ∈ Z 3 ∀k ∈ Z, k ≥ m, where A
and B are fixed real numbers with B 6= 0.

(The part with m and k just allows for there to be some base
cases.)
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Determining the Characteristic
Equation

• A second-order linear homogeneous recurrence relation is
satisfied by the sequence 1, t, t2, t3, t4 . . . , tn

• i.e. tk = A · tk−1 + B · tt−2 because each term is equal to
A times the previous term plus B times the term before
that.

• Dividing by tk−2 gives t2 − At − B = 0.

• This is true in general. A sequence of the form tk only
satisfies the 2nd order homogeneous recurrence iff it
satisfies t2 − At − B = 0.

• We call this equation the Characteristic Equation.



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Determining the Characteristic
Equation

• A second-order linear homogeneous recurrence relation is
satisfied by the sequence 1, t, t2, t3, t4 . . . , tn

• i.e. tk = A · tk−1 + B · tt−2 because each term is equal to
A times the previous term plus B times the term before
that.

• Dividing by tk−2 gives t2 − At − B = 0.

• This is true in general. A sequence of the form tk only
satisfies the 2nd order homogeneous recurrence iff it
satisfies t2 − At − B = 0.

• We call this equation the Characteristic Equation.



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Determining the Characteristic
Equation

• A second-order linear homogeneous recurrence relation is
satisfied by the sequence 1, t, t2, t3, t4 . . . , tn

• i.e. tk = A · tk−1 + B · tt−2 because each term is equal to
A times the previous term plus B times the term before
that.

• Dividing by tk−2 gives t2 − At − B = 0.

• This is true in general. A sequence of the form tk only
satisfies the 2nd order homogeneous recurrence iff it
satisfies t2 − At − B = 0.

• We call this equation the Characteristic Equation.



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Determining the Characteristic
Equation

• A second-order linear homogeneous recurrence relation is
satisfied by the sequence 1, t, t2, t3, t4 . . . , tn

• i.e. tk = A · tk−1 + B · tt−2 because each term is equal to
A times the previous term plus B times the term before
that.

• Dividing by tk−2 gives t2 − At − B = 0.

• This is true in general. A sequence of the form tk only
satisfies the 2nd order homogeneous recurrence iff it
satisfies t2 − At − B = 0.

• We call this equation the Characteristic Equation.



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Determining the Characteristic
Equation

• A second-order linear homogeneous recurrence relation is
satisfied by the sequence 1, t, t2, t3, t4 . . . , tn

• i.e. tk = A · tk−1 + B · tt−2 because each term is equal to
A times the previous term plus B times the term before
that.

• Dividing by tk−2 gives t2 − At − B = 0.

• This is true in general. A sequence of the form tk only
satisfies the 2nd order homogeneous recurrence iff it
satisfies t2 − At − B = 0.

• We call this equation the Characteristic Equation.



Lecture 9:
Recurrence
Relations

Matthew
Fricke

Definition

Examples

Guess and
Check

Binary Search

Characteristic
Equation
Method

The Fibonacci
Sequence

Golden Ratio

Gambler’s
Ruin

Example

• Find a sequence that satisfies ak = ak−1 + 2ak−2

• This is of the form ak = 1 · ak−1 + B · ak−2 where A = 1,
and B = 2

• So the characteristic equation t2 − At − B = 0 is
t2 − t − 2 = 0.

• Now we need to find t so that the characteristic equation
is satisfied, i.e. equal to zero.

• Recall all the fun you had finding roots of quadratic
formulas in Algebra I!
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Example

• Find a sequence that satisfies ak = ak−1 + 2ak−2

• t2 − t − 2 = (t − 2)(t + 1)

• The roots are 2 and -1.

• So the only sequences of the form tn that satisfy the
recurrence are:
rn = 20, 21, 22, 23, 24 . . . and
sn = (−1)0, (−1)1, (−1)2, (−1)3, (−1)4 . . .

• AND any linear combination of these sequences satisfies
the recurrence: an = C · rn + D · sn, C and D can be any
numbers.
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Distinct Roots Theorem

All that leads us to the Distinct Roots Theorem. Suppose a
sequence a0, a1, a2, . . . satisfies a recurrence relation
ak = A · ak−1 + B · ak−1 for some real numbers A and B and k
> 2.
Then a0, a1, a2, . . . satisfies the closed form an = C · rn + D · sn
if the characteristic equation t2 − At − B = 0 has two distinct
roots r and s. Where C and D are solutions to the system of
equations a0 = C · r0 + D · s0 and a1 = C · r1 + D · s1.
Equivalently a0 = C + D and a1 = C · r + D · s
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Single Root Theorem

and the Single Root Theorem. Suppose a sequence
a0, a1, a2, . . . satisfies a recurrence relation
ak = A · ak−1 + B · ak−1 for some real numbers A and B and k
> 2.
Then a0, a1, a2, . . . satisfies the closed form
an = C · rn + nD · rn if the characteristic equation
t2 − At − B = 0 has a single (perhaps repeated) root r . Where
C and D are solutions to the system of equations
a0 = C · r0 + nD · r0 and a1 = C · r1 + nD · r1. Equivalently
a0 = C + D and a1 = C · r + nD · r .
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Fibonacci Sequence

• Now we are equipped to solve recurrences like the
Fibonacci sequence.

• Recall the Fibonacci sequence is Fn = Fn−1 + Fn−2, with
base cases F0 = 0,F1 = 1.

• The Fibonacci sequence is a second-order and
homogeneous with constant coefficients: A=1, B=1

• The characteristic equation is t2 − t − 1 = 0

• Solving this equation for t:

t = b±
√
b2−4ac
2a for any quadratic polynomial:

at2 + bt + c = 0 (Quadratic Formula).

• t =
1±
√

1−4(−1)

2 = 1±
√

5
2 . Two distinct roots.
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• Solving this equation for t:

t = b±
√
b2−4ac
2a for any quadratic polynomial:

at2 + bt + c = 0 (Quadratic Formula).

• t =
1±
√

1−4(−1)

2 = 1±
√

5
2 . Two distinct roots.
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• t = 1±
√

5
2 . Two distinct roots, ρ1 and ρ2.

• so by the distinct root theorem:

Fn = C
(

1+
√

5
2

)n
+ D

(
1−
√

5
2

)n

• Now we need to find the values of C and D using the
initial conditions (differential equations), base cases
(recurrences).

• The base cases are F0 = 0 and F1 = 1.

• So we need to solve the system of equations:
F1 = 1 = C + D
F2 = 1 = Cρ1 + Dρ2

• Solving this system gives C = 1+
√

5
2
√

5
,D = −1+

√
5

2
√

5
One way

to solve this system using the method of partial fractions.
If you know this method the setup is:

F (z) = z
1−z−z2 = 1√

5

(
1

1−ρ1z
− 1

1−ρ2z

)
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• So we have solved the Fibonacci recurrence:

Fn = 1+
√

5
2
√

5

(
1+
√

5
2

)n
+ −1+

√
5

2
√

5

(
1−
√

5
2

)n

• Seems strange that this sequence is made up of integers
but we have

√
5 throughout.

• It turns out that this value 1+
√

5
2 is very special. It is called

the Golden Ratio or Golden Mean and has the symbol Φ

• During the Renaissance Φ was known as the Divine
Proportion
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Consider a game of chance. You (the player) will win $1 or lose
$1 depending on the outcome of a coin toss. If the coin comes
up heads you win if it comes up tails you lose.

You decide to play until one of two conditions are met:
1) You run out of money.
2) or you have won a target amount of money, M.

The question we would like to answer is the probability of you
going bust given a starting amount of money and the target
value, M.
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• Notice that the amount of money you have in the first
round is equal to your starting amount.

• Otherwise the amount of money you have depends on the
amount of money you had previous round coupled with the
outcome of the previous coin toss.

• So we have a sequence of values for the probability of
going bust Pn given $n that depends on previous values of
Pk .

• In other words we have a recurrence that we can try to
define and solve.
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• The probability of a player having $k, i.e. Pk transitioning
into Pk−1 (losing a dollar) is 1

2 .

• The probability of transitioning to state Pk+1 (winning a
dollar) is also 1

2 .

• These outcomes are related by xor so we can use the
addition rule of discrete probability.

• Therefore Pk = 1
2Pk−1 + 1

2Pk+1.
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• Therefore Pk = 1
2Pk−1 + 1

2Pk+1.

• Rewriting in a form we are more used to:
0 = −2Pk + Pk−1 + Pk+1.

• Having the coefficient 2 on Pk is awkward but we can shift
the sequence index by -1.

• 0 = −2Pk−1 + Pk−2 + Pk .

• Rewriting: Pk = 2Pk−1 − Pk−2.
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• Now we have a second order homogeneous recurrence with
constant coefficients.

• We know how to solve those using the Characteristic
Equation method.

• What about the base cases though. Here the sequence
ends under two circumstances:

• The player wins a total of $M or the player loses all their
money.

• So the base cases (more like boundary conditions in this
case) are PM = 0 and P0 = 1.

• Since the Probability of going bust when you have $0 is 1.
The Probability of going bust when you have $M is 0.
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• Now we have everything we need to solve the recurrence.

• Characteristic Equation: t2 − 2t + 1 = 0 since A = 2 and
B = −1 in Pk = APk−1 + BPk−2 and the characteristic
equation is t2 − At + B = 0.

• Now we find the roots of the characteristic polynomial.

• Factoring: (t − 1)(t − 1) The repeated root is ρ = 1.

• Using the single root theorem: Pn = C (1)n + nD(1)n.

• Solving for C and D:
P0 = 1 = C + (0)D
PM = 0 = C + (M)D
∴ C = 1
∴ D = − 1

M
∴ Pn = 1− n 1

M

∴ Pn = M
M − n 1

M = M−n
M
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• Now we have a closed form for the recurrence and can
answer the question for any target amount and starting
amount of money.

• Example: What is the probability of going bust if you start
with $30 and your goal is $120.

• Answer: M = 120, n = 30. P30 = 120−30
120 = 75%.

• Another Examples: M = 500, n = 50.
P50 = 500−50

500 = 90% chance of going bust before winning
$500.
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