Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Lecture 9: Recurrence Relations

Matthew Fricke

July 15, 2013

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

1 Definition

2 Examples

- 3 Guess and Check
- 4 Binary Search
- 5 Characteristic Equation Method
- 6 The Fibonacci Sequence
- 7 Golden Ratio
- 8 Gambler's Ruin

This Lecture

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

What are Recurrence Relations?

• A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative.

Matthew Fricke

Definition

Examples

- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacc Sequence
- Golden Ratio
- Gambler's Ruin

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative.
- The discrete version of a differential equation is a difference equation.

Matthew Fricke

Definition

Examples

- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio

Gambler's Ruin

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative.
- The discrete version of a differential equation is a difference equation.
- Sometimes people call recurrence relations difference equations but really difference equations are just a type of recurrence relation.

Matthew Fricke

Definition

Examples

- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- A recurrence relation is an equation that defines a value in a sequence using previous values in the sequence.
- Recurrence relations are closely tied to differential equations because they are both self referential.
- A differential equation relates a function to its own derivative.
- The discrete version of a differential equation is a difference equation.
- Sometimes people call recurrence relations difference equations but really difference equations are just a type of recurrence relation.
- Some of the techniques for solving recurrence relations are almost the same as those used to solve differential equations.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonaco Sequence

Golden Ratio

Gambler's Ruin

Examples of Recursion Relations

Towers of Hanoi

Fibonacci Sequence

 $T_0 = 0$ $T_n = 2T_{n-1} + 1$

 $egin{array}{l} F_0 = 0 \ F_1 = 1 \end{array}$

 $F_n = F_{n-1} + F_{n-2}$

Compound Interest

Stirling Numbers

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Towers of Hanoi

• Recall that the recurrence T_n represents the amount of work needed to solve the problem.

- Lecture 9: Recurrence Relations
- Matthew Fricke
- Definition
- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method
- The Fibonacc Sequence
- Golden Ratio
- Gambler's Ruin

- Recall that the recurrence T_n represents the amount of work needed to solve the problem.
- We solved the problem by figuring out a general statement characterizing the amount of work needed to move *one* disk from one peg to another: 2(n-1) + 1 where n is the number of disks.

- Lecture 9: Recurrence Relations
- Matthew Fricke
- Definition
- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacc Sequence
- Golden Ratio
- Gambler's Ruin

- Recall that the recurrence T_n represents the amount of work needed to solve the problem.
- We solved the problem by figuring out a general statement characterizing the amount of work needed to move *one* disk from one peg to another: 2(n-1) + 1 where n is the number of disks.
- Then we wrote out the sequence values for $T_0, T_1, T_2, T_3, T_4 \ldots = 0, 1, 3, 7, 15 \ldots$

- Lecture 9: Recurrence Relations
- Matthew Fricke
- Definition
- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Recall that the recurrence T_n represents the amount of work needed to solve the problem.
- We solved the problem by figuring out a general statement characterizing the amount of work needed to move *one* disk from one peg to another: 2(n-1) + 1 where n is the number of disks.
- Then we wrote out the sequence values for $T_0, T_1, T_2, T_3, T_4 \ldots = 0, 1, 3, 7, 15 \ldots$
- Guessed that the formula was $2^n 1$

- Lecture 9: Recurrence Relations
- Matthew Fricke
- Definition
- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Recall that the recurrence T_n represents the amount of work needed to solve the problem.
- We solved the problem by figuring out a general statement characterizing the amount of work needed to move *one* disk from one peg to another: 2(n-1) + 1 where n is the number of disks.
- Then we wrote out the sequence values for $T_0, T_1, T_2, T_3, T_4 \ldots = 0, 1, 3, 7, 15 \ldots$
- Guessed that the formula was $2^n 1$
- ... and proved it with mathematical induction.

Matthew Fricke

Definition

- Examples
- Guess and Check

Binary Search

- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

Binary Search Example

• We are going to come up with an algorithm to solve a search problem.

Matthew Fricke

Definition

- Examples
- Guess and Check

Binary Search

- Characteristi Equation Method
- The Fibonacc Sequence
- Golden Ratio
- Gambler's Ruin

- We are going to come up with an algorithm to solve a search problem.
- then analyse the amount of work needed to search using recurrence relations.

Matthew Fricke

Definition

- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method
- The Fibonacc Sequence
- Golden Ratio
- Gambler's Ruin

- We are going to come up with an algorithm to solve a search problem.
- then analyse the amount of work needed to search using recurrence relations.
- Given a *sorted* array of integers how might we determine if a particular integer is in the array?

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristi Equation Method

The Fibonace Sequence

Golden Ratio

Gambler's Ruin

Binary Search Example

1: function BINSEARCH(key, array, start, end)

- 2: **if** end \leq start **then**
 - return FALSE

4: **else**

3.

5:

6:

7:

8:

9:

- $\mathsf{mid} \leftarrow \frac{\mathsf{end} + \mathsf{start}}{2}$
 - **if** key = array[mid] **then**
 - return TRUE
- else if key \leq array[mid] then
 - **return** BinSearch(key, array, start, mid)
- 10: else if key > array[mid] then
- 11: return BinSearch(key, array, mid, end)

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Binary Search Example

• Let's define a recurrence relation T(n) (T for time) that describes the amount of work to be done by BinarySearch.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Let's define a recurrence relation T(n) (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristie Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Let's define a recurrence relation T(n) (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristi Equation Method

The Fibonaco Sequence

Golden Ratio

Gambler's Ruin

- Let's define a recurrence relation T(n) (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.
- Notice that due to Line 5 in the algorithm each recursive call only needs to work on half the array that the previous call worked on.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

- Let's define a recurrence relation T(n) (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.
- Notice that due to Line 5 in the algorithm each recursive call only needs to work on half the array that the previous call worked on.
- So we guess that $T(n) = T(\frac{n}{2}) + 1$, n = the size of the array.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

- Let's define a recurrence relation T(n) (T for time) that describes the amount of work to be done by BinarySearch.
- We are thinking about the work done in the worst case (we might find the key on the first try).
- Typically "work" means operations or memory accesses.
- Notice that due to Line 5 in the algorithm each recursive call only needs to work on half the array that the previous call worked on.
- So we guess that $T(n) = T(\frac{n}{2}) + 1$, n = the size of the array.
- Base case: *T*(2) = 1

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Binary Search Example

• We would like to put the recurrence in closed form. That is we would like to solve the recurrence.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: 1, 2, 4, 8, 16....

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: 1, 2, 4, 8, 16....
- We recognize this as 2ⁿ which is an exponential function.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: 1, 2, 4, 8, 16....
- We recognize this as 2ⁿ which is an exponential function.
- If we halve the values at each step ... 16, 8, 4, 2, 1 we are doing the inverse.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: 1, 2, 4, 8, 16....
- We recognize this as 2ⁿ which is an exponential function.
- If we halve the values at each step ... 16, 8, 4, 2, 1 we are doing the inverse.
- The inverse of an exponential function is the logarithmic function.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: 1, 2, 4, 8, 16....
- We recognize this as 2ⁿ which is an exponential function.
- If we halve the values at each step ... 16, 8, 4, 2, 1 we are doing the inverse.
- The inverse of an exponential function is the logarithmic function.
- Therefore we guess that that $T(n) = \log_2(n)$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- We would like to put the recurrence in closed form. That is we would like to solve the recurrence.
- Intuitively if we have a sequence that doubles at each step we get: 1, 2, 4, 8, 16....
- We recognize this as 2ⁿ which is an exponential function.
- If we halve the values at each step ... 16, 8, 4, 2, 1 we are doing the inverse.
- The inverse of an exponential function is the logarithmic function.
- Therefore we guess that that $T(n) = \log_2(n)$
- Base case: *T*(2) = 1

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Binary Search Example

• The next step is to try and prove our guess was right with mathematical induction.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristi Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- The next step is to try and prove our guess was right with mathematical induction.
- Proof by strong induction:

Matthew Fricke

Definition

Examples

Guess and Check

- Binary Search
- Characterist Equation Method
- The Fibonacc Sequence
- Golden Ratio

Gambler's Ruin

• The next step is to try and prove our guess was right with

- mathematical induction.
- Proof by strong induction:
- Base case n = 2: $\log_2(2 \cdot 2) = 1$, QED for Base Case

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristi Equation Method

The Fibonaco Sequence

Golden Ratio

Gambler's Ruin

• The next step is to try and prove our guess was right with mathematical induction.

- Proof by strong induction:
- Base case n = 2: $\log_2(2 \cdot 2) = 1$, QED for Base Case
- Inductive Step: $\forall j < k, T(j) = T(\frac{j}{2}) + 1 = \log_2(j) \implies$ $T(k) = T(\frac{k}{2}) + 1 = \log_2(k)$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Binary Search Example

• Proof of the inductive step:
Matthew Fricke

Definition

- Examples
- Guess and Check

Binary Search

- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Proof of the inductive step:
- $T(k) = T(\frac{k}{2}) + 1$ this is a premise.

Matthew Fricke

Definition

- Examples
- Guess and Check

Binary Search

- Characteristic Equation Method
- The Fibonacc Sequence
- Golden Ratio
- Gambler's Ruin

- Proof of the inductive step:
- $T(k) = T(\frac{k}{2}) + 1$ this is a premise.
- $\frac{k}{2} < k \implies T(\frac{k}{2}) = \log_2(\frac{k}{2})$ induction hypothesis.

Matthew Fricke

Definition

- Examples
- Guess and Check

Binary Search

- Characteristic Equation Method
- The Fibonacc Sequence
- Golden Ratio
- Gambler's Ruin

- Proof of the inductive step:
- $T(k) = T(\frac{k}{2}) + 1$ this is a premise.
- $\frac{k}{2} < k \implies T(\frac{k}{2}) = \log_2(\frac{k}{2})$ induction hypothesis.
- $T(\frac{k}{2}) = \log_2 \frac{k}{2} = \log_2 k \log_2 2 = \log_2 k 1$ by log rules.

Matthew Fricke

Definition

- Examples
- Guess and Check

Binary Search

Characteristi Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Proof of the inductive step:
- $T(k) = T(\frac{k}{2}) + 1$ this is a premise.
- $\frac{k}{2} < k \implies T(\frac{k}{2}) = \log_2(\frac{k}{2})$ induction hypothesis.
- $T(\frac{k}{2}) = \log_2 \frac{k}{2} = \log_2 k \log_2 2 = \log_2 k 1$ by log rules.
- $T(k) = T(\frac{k}{2}) + 1 = \{\log_2(k) 1\} + 1$ by substitution.

Matthew Fricke

Definition

- Examples
- Guess and Check

Binary Search

Characteristi Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Proof of the inductive step:
- $T(k) = T(\frac{k}{2}) + 1$ this is a premise.
- $\frac{k}{2} < k \implies T(\frac{k}{2}) = \log_2(\frac{k}{2})$ induction hypothesis.
- $T(\frac{k}{2}) = \log_2 \frac{k}{2} = \log_2 k \log_2 2 = \log_2 k 1$ by log rules.
- $T(k) = T(\frac{k}{2}) + 1 = \{\log_2(k) 1\} + 1$ by substitution.
 - $T(k) = \log_2(k)$ by simplification of -1 + 1. QED

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Binary Search Example

• Proofs are often presented in the opposite order to which they were developed.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k) = \log_2(k)$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k) = \log_2(k)$
- We want to make $T(k) = T(k/2) + 1 = \log_2(x)$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k) = \log_2(k)$
- We want to make $T(k) = T(k/2) + 1 = \log_2(x)$
- We have that it is true for everything less than k by strong induction.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k) = \log_2(k)$
- We want to make $T(k) = T(k/2) + 1 = \log_2(x)$
- We have that it is true for everything less than k by strong induction.
- So solve for $x : \log_2(x) = \log_2(k) 1 \implies \log_2(x) \log_2(2) \implies \log_2(x) = \log_2(k/2)$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Proofs are often presented in the opposite order to which they were developed.
- The progression of thought for this proof is:
- Assume what we want is true. Then $T(k) = \log_2(k)$
- We want to make $T(k) = T(k/2) + 1 = \log_2(x)$
- We have that it is true for everything less than k by strong induction.
- So solve for $x : \log_2(x) = \log_2(k) 1 \implies \log_2(x) \log_2(2) \implies \log_2(x) = \log_2(k/2)$
- ∴ x = k/2 Since k/2 is less than k we can use proof by strong induction.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Characteristic Equation Method

• Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the *Characteristic Equation* of a recurrence.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the *Characteristic Equation* of a recurrence.
- (The term Characteristic Equation comes from Linear Algebra)

Matthew Fricke

- Definition
- Examples
- Guess and Check
- Binary Search

Characteristic Equation Method

- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the *Characteristic Equation* of a recurrence.
- (The term Characteristic Equation comes from Linear Algebra)
- The method works on second-order linear recurrence relations with constant coefficients. Annihilators generalize this method to any order.

Matthew Fricke

- Definition
- Examples
- Guess and Check
- Binary Search

Characteristic Equation Method

- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Guess-and-Check is a very common approach (variations are method of iteration and substitution). Most useful when you already have enough experience and intuition to be able to look at a recurrence and know the answer from comparison with other similar problems.
- More analytical methods include The Master Method, Recursion Trees, and Annihilators.
- We will learn a method using the *Characteristic Equation* of a recurrence.
- (The term Characteristic Equation comes from Linear Algebra)
- The method works on second-order linear recurrence relations with constant coefficients. Annihilators generalize this method to any order.
- Second order recurrence: refers to two previous values of the recurrence, e.g. $T_n = T_{n-1} + T_{n-2}$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristi Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Determining the Characteristic Equation

Definition: A second-order linear homogeneous recurrence relation with constant coefficients is a recurrence relation of the form:

 $a_k = A \cdot a_{k-1} + B \cdot a_{k-2}, \exists m \in \mathbb{Z} \ni \forall k \in \mathbb{Z}, k \ge m$, where A and B are fixed real numbers with $B \neq 0$.

(The part with m and k just allows for there to be some base cases.)

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Determining the Characteristic Equation

 A second-order linear homogeneous recurrence relation is satisfied by the sequence 1, t, t², t³, t⁴..., tⁿ

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- A second-order linear homogeneous recurrence relation is satisfied by the sequence 1, t, t², t³, t⁴..., tⁿ
- i.e. t^k = A · t^{k-1} + B · t^{t-2} because each term is equal to A times the previous term plus B times the term before that.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- A second-order linear homogeneous recurrence relation is satisfied by the sequence 1, t, t², t³, t⁴..., tⁿ
- i.e. t^k = A · t^{k-1} + B · t^{t-2} because each term is equal to A times the previous term plus B times the term before that.
- Dividing by t^{k-2} gives $t^2 At B = 0$.

Matthew Fricke

Definition

- Examples
- Guess and Check
- Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- A second-order linear homogeneous recurrence relation is satisfied by the sequence 1, t, t², t³, t⁴..., tⁿ
- i.e. t^k = A · t^{k-1} + B · t^{t-2} because each term is equal to A times the previous term plus B times the term before that.
- Dividing by t^{k-2} gives $t^2 At B = 0$.
- This is true in general. A sequence of the form t^k only satisfies the 2nd order homogeneous recurrence iff it satisfies $t^2 At B = 0$.

Matthew Fricke

Definition

- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method

The Fibonacci Sequence

- Golden Ratio
- Gambler's Ruin

- A second-order linear homogeneous recurrence relation is satisfied by the sequence 1, t, t², t³, t⁴..., tⁿ
- i.e. t^k = A · t^{k-1} + B · t^{t-2} because each term is equal to A times the previous term plus B times the term before that.
- Dividing by t^{k-2} gives $t^2 At B = 0$.
- This is true in general. A sequence of the form t^k only satisfies the 2nd order homogeneous recurrence iff it satisfies $t^2 At B = 0$.
- We call this equation the Characteristic Equation.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Example

• Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$

Fricke

Lecture 9: Recurrence

Relations Matthew

- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$
- This is of the form $a_k = 1 \cdot a_{k-1} + B \cdot a_{k-2}$ where A = 1, and B = 2

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method

The Fibonacci Sequence

- Golden Ratio
- Gambler's Ruin

- Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$
- This is of the form $a_k = 1 \cdot a_{k-1} + B \cdot a_{k-2}$ where A = 1, and B = 2
- So the characteristic equation $t^2 At B = 0$ is $t^2 t 2 = 0$.

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method

The Fibonacci Sequence

- Golden Ratio
- Gambler's Ruin

- Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$
- This is of the form $a_k = 1 \cdot a_{k-1} + B \cdot a_{k-2}$ where A = 1, and B = 2
- So the characteristic equation $t^2 At B = 0$ is $t^2 t 2 = 0$.
- Now we need to find *t* so that the characteristic equation is satisfied, i.e. equal to zero.

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method

The Fibonacci Sequence

- Golden Ratio
- Gambler's Ruin

- Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$
- This is of the form $a_k = 1 \cdot a_{k-1} + B \cdot a_{k-2}$ where A = 1, and B = 2
- So the characteristic equation $t^2 At B = 0$ is $t^2 t 2 = 0$.
- Now we need to find *t* so that the characteristic equation is satisfied, i.e. equal to zero.
- Recall all the fun you had finding roots of quadratic formulas in Algebra I!

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Example

• Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin • Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$

•
$$t^2 - t - 2 = (t - 2)(t + 1)$$

Lecture 9: Recurrence Relations

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin • Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$

•
$$t^2 - t - 2 = (t - 2)(t + 1)$$

• The roots are 2 and -1.

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin • Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$

•
$$t^2 - t - 2 = (t - 2)(t + 1)$$

- The roots are 2 and -1.
- So the only sequences of the form t^n that satisfy the recurrence are:

$$r_n = 2^0, 2^1, 2^2, 2^3, 2^4 \dots$$
 and
 $s_n = (-1)^0, (-1)^1, (-1)^2, (-1)^3, (-1)^4 \dots$

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method

The Fibonacci Sequence

- Golden Ratio
- Gambler's Ruin

• Find a sequence that satisfies $a_k = a_{k-1} + 2a_{k-2}$

•
$$t^2 - t - 2 = (t - 2)(t + 1)$$

- The roots are 2 and -1.
- So the only sequences of the form t^n that satisfy the recurrence are:

$$r_n = 2^0, 2^1, 2^2, 2^3, 2^4 \dots$$
 and
 $s_n = (-1)^0, (-1)^1, (-1)^2, (-1)^3, (-1)^4 \dots$

• AND any linear combination of these sequences satisfies the recurrence: $a_n = C \cdot r_n + D \cdot s_n$, C and D can be any numbers.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Distinct Roots Theorem

All that leads us to the Distinct Roots Theorem. Suppose a sequence a_0, a_1, a_2, \ldots satisfies a recurrence relation $a_k = A \cdot a_{k-1} + B \cdot a_{k-1}$ for some real numbers A and B and k > 2.

Then a_0, a_1, a_2, \ldots satisfies the closed form $a_n = C \cdot r^n + D \cdot s^n$ if the characteristic equation $t^2 - At - B = 0$ has two distinct roots r and s. Where C and D are solutions to the system of equations $a_0 = C \cdot r^0 + D \cdot s^0$ and $a_1 = C \cdot r^1 + D \cdot s^1$. Equivalently $a_0 = C + D$ and $a_1 = C \cdot r + D \cdot s$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Single Root Theorem

and the Single Root Theorem. Suppose a sequence a_0, a_1, a_2, \ldots satisfies a recurrence relation $a_k = A \cdot a_{k-1} + B \cdot a_{k-1}$ for some real numbers A and B and k > 2. Then a_0, a_1, a_2, \ldots satisfies the closed form $a_n = C \cdot r^n + nD \cdot r^n$ if the characteristic equation $t^2 - At - B = 0$ has a single (perhaps repeated) root r. Where C and D are solutions to the system of equations $a_0 = C \cdot r^0 + nD \cdot r^0$ and $a_1 = C \cdot r^1 + nD \cdot r^1$. Equivalently $a_0 = C + D$ and $a_1 = C \cdot r + nD \cdot r$.
Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Fibonacci Sequence

• Now we are equipped to solve recurrences like the Fibonacci sequence.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_n = F_{n-1} + F_{n-2}$, with base cases $F_0 = 0, F_1 = 1$.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristi Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_n = F_{n-1} + F_{n-2}$, with base cases $F_0 = 0, F_1 = 1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: A=1, B=1

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_n = F_{n-1} + F_{n-2}$, with base cases $F_0 = 0, F_1 = 1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: A=1, B=1
- The characteristic equation is $t^2 t 1 = 0$

- Matthew Fricke
- Definition
- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_n = F_{n-1} + F_{n-2}$, with base cases $F_0 = 0, F_1 = 1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: A=1, B=1
- The characteristic equation is $t^2 t 1 = 0$
- Solving this equation for t: $t = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ for any quadratic polynomial: $at^2 + b^t + c = 0$ (Quadratic Formula).

- Matthew Fricke
- Definition
- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Now we are equipped to solve recurrences like the Fibonacci sequence.
- Recall the Fibonacci sequence is $F_n = F_{n-1} + F_{n-2}$, with base cases $F_0 = 0, F_1 = 1$.
- The Fibonacci sequence is a second-order and homogeneous with constant coefficients: A=1, B=1
- The characteristic equation is $t^2 t 1 = 0$
- Solving this equation for t: $t = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$ for any quadratic polynomial: $at^2 + b^t + c = 0$ (Quadratic Formula).
- $t = \frac{1 \pm \sqrt{1-4(-1)}}{2} = \frac{1 \pm \sqrt{5}}{2}$. Two distinct roots.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

•
$$t = \frac{1 \pm \sqrt{5}}{2}$$
. Two distinct roots, ρ_1 and ρ_2 .

Lecture 9: Recurrence Relations Matthew

Fricke

Fibonacci Sequence

- $t = \frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_1 and ρ_2 .
- so by the distinct root theorem:

$$F_n = C\left(\frac{1+\sqrt{5}}{2}\right)^n + D\left(\frac{1-\sqrt{5}}{2}\right)^n$$

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Fibonacci Sequence

- $t = \frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_1 and ρ_2 .
- so by the distinct root theorem:

$$F_n = C\left(\frac{1+\sqrt{5}}{2}\right)^n + D\left(\frac{1-\sqrt{5}}{2}\right)$$

• Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- $t = \frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_1 and ρ_2 .
- so by the distinct root theorem:

$$F_n = C\left(\frac{1+\sqrt{5}}{2}\right)'' + D\left(\frac{1-\sqrt{5}}{2}\right)$$

- Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).
- The base cases are $F_0 = 0$ and $F_1 = 1$.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

- $t = \frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_1 and ρ_2 .
- so by the distinct root theorem:

$$F_n = C\left(\frac{1+\sqrt{5}}{2}\right)'' + D\left(\frac{1-\sqrt{5}}{2}\right)$$

- Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).
- The base cases are $F_0 = 0$ and $F_1 = 1$.
- So we need to solve the system of equations:

$$F_1 = 1 = C + D$$

 $F_2 = 1 = C\rho_1 + D\rho_2$

Matthew Fricke

Definition

- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Fibonacci Sequence

- $t = \frac{1 \pm \sqrt{5}}{2}$. Two distinct roots, ρ_1 and ρ_2 .
- so by the distinct root theorem: $(1 + \sqrt{5})^n$ $(1 - \sqrt{5})^n$

$$F_n = C\left(\frac{1+\sqrt{5}}{2}\right)^n + D\left(\frac{1-\sqrt{5}}{2}\right)$$

- Now we need to find the values of C and D using the initial conditions (differential equations), base cases (recurrences).
- The base cases are $F_0 = 0$ and $F_1 = 1$.
- So we need to solve the system of equations:

$$F_1 = 1 = C + D$$

$$F_2 = 1 = C\rho_1 + D\rho_2$$

• Solving this system gives $C = \frac{1+\sqrt{5}}{2\sqrt{5}}, D = \frac{-1+\sqrt{5}}{2\sqrt{5}}$ One way to solve this system using the method of partial fractions. If you know this method the setup is: $F(z) = \frac{z}{1-z-z^2} = \frac{1}{\sqrt{5}} \left(\frac{1}{1-\rho_1 z} - \frac{1}{1-\rho_2 z} \right)$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Fibonacci Sequence

• So we have solved the Fibonacci recurrence:

$$F_{n} = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n} + \frac{-1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n}$$

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Fibonacci Sequence

• So we have solved the Fibonacci recurrence:

$$F_{n} = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n} + \frac{-1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n}$$

• Seems strange that this sequence is made up of integers but we have $\sqrt{5}$ throughout.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Fibonacci Sequence

• So we have solved the Fibonacci recurrence:

$$F_{n} = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n} + \frac{-1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n}$$

- Seems strange that this sequence is made up of integers but we have $\sqrt{5}$ throughout.
- It turns out that this value $\frac{1+\sqrt{5}}{2}$ is very special. It is called the Golden Ratio or Golden Mean and has the symbol Φ

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

Fibonacci Sequence

• So we have solved the Fibonacci recurrence:

$$F_{n} = \frac{1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n} + \frac{-1+\sqrt{5}}{2\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n}$$

- Seems strange that this sequence is made up of integers but we have $\sqrt{5}$ throughout.
- It turns out that this value $\frac{1+\sqrt{5}}{2}$ is very special. It is called the Golden Ratio or Golden Mean and has the symbol Φ
- During the Renaissance Φ was known as the Divine Proportion

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacci Sequence

Golden Ratio

Gambler's Ruin

The Golden Ratio

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonacc Sequence

Golden Ratio

Gambler's Ruin

Gambler's Ruin

Consider a game of chance. You (the player) will win \$1 or lose \$1 depending on the outcome of a coin toss. If the coin comes up heads you win if it comes up tails you lose.

You decide to play until one of two conditions are met: 1) You run out of money.

2) or you have won a target amount of money, M.

The question we would like to answer is the probability of you going bust given a starting amount of money and the target value, M.

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Notice that the amount of money you have in the first round is equal to your starting amount.
- Otherwise the amount of money you have depends on the amount of money you had previous round coupled with the outcome of the previous coin toss.
- So we have a sequence of values for the probability of going bust P_n given \$n that depends on previous values of P_k.
- In other words we have a recurrence that we can try to define and solve.

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- The probability of a player having \$k, i.e. P_k transitioning into P_{k-1} (losing a dollar) is ¹/₂.
- The probability of transitioning to state P_{k+1} (winning a dollar) is also ¹/₂.
- These outcomes are related by xor so we can use the addition rule of discrete probability.
- Therefore $P_k = \frac{1}{2}P_{k-1} + \frac{1}{2}P_{k+1}$.

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

Examples

- Guess and Check
- Binary Search
- Characteristic Equation Method
- The Fibonacci Sequence
- Golden Ratio

Gambler's Ruin

- Therefore $P_k = \frac{1}{2}P_{k-1} + \frac{1}{2}P_{k+1}$.
- Rewriting in a form we are more used to: $0 = -2P_k + P_{k-1} + P_{k+1}.$
- Having the coefficient 2 on P_k is awkward but we can shift the sequence index by -1.
- $0 = -2P_{k-1} + P_{k-2} + P_k$.
- Rewriting: $P_k = 2P_{k-1} P_{k-2}$.

- Matthew Fricke
- Definition
- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

Gambler's Ruin

- Now we have a second order homogeneous recurrence with constant coefficients.
- We know how to solve those using the Characteristic Equation method.
- What about the base cases though. Here the sequence ends under two circumstances:
- The player wins a total of \$*M* or the player loses all their money.
- So the base cases (more like boundary conditions in this case) are $P_M = 0$ and $P_0 = 1$.
- Since the Probability of going bust when you have \$0 is 1. The Probability of going bust when you have \$*M* is 0.

Matthew Fricke

Definition

Examples

Guess and Check

Binary Search

Characteristic Equation Method

The Fibonaco Sequence

Golden Ratio

Gambler's Ruin

Gambler's Ruin

- Now we have everything we need to solve the recurrence.
- Characteristic Equation: $t^2 2t + 1 = 0$ since A = 2 and B = -1 in $P_k = AP_{k-1} + BP_{k-2}$ and the characteristic equation is $t^2 At + B = 0$.
- Now we find the roots of the characteristic polynomial.
- Factoring: (t-1)(t-1) The repeated root is $\rho = 1$.
- Using the single root theorem: $P_n = C(1)^n + nD(1)^n$.
- Solving for C and D:
 - $P_0 = 1 = C + (0)D$ $P_M = 0 = C + (M)D$ $\therefore C = 1$ $\therefore D = -\frac{1}{M}$ $\therefore P_n = 1 n\frac{1}{M}$ $\therefore P_n = \frac{M}{M} n\frac{1}{M} = \frac{M-n}{M}$

Definition

Lecture 9: Recurrence

Relations Matthew Fricke

- Examples
- Guess and Check
- Binary Search
- Characteristi Equation Method
- The Fibonacci Sequence
- Golden Ratio
- Gambler's Ruin

- Now we have a closed form for the recurrence and can answer the question for any target amount and starting amount of money.
- Example: What is the probability of going bust if you start with \$30 and your goal is \$120.
- Answer: M = 120, n = 30. $P_30 = \frac{120-30}{120} = 75\%$.
- Another Examples: M = 500, n = 50. $P_50 = \frac{500-50}{500} = 90\%$ chance of going bust before winning \$500.