
Logistics

Reading 5 has been assigned. (Due next Sunday)

Homework 5 has been assigned. (Due next Sunday)

There is a quiz in your lab sections this week.

Exam 1 grade distribution and solution key have
been posted.

Exam Grade distribution

34% of the exams were in the
“Good” or “Excellent” range.

36% of the exams were in the
“satisfactory” range.

30% of the exams were in the “not
satisfactory “or below range.

Overall Grades

82% of the class
has a grade of
“satisfactory” or
above.

Congratulations!

Please come to office hours if you have a grade below C-.
We are here to help you get into the green zone.

Programming Styles

There are many styles of programming, for example:

• Procedural Programming (basically what you have learned so far)
• Functional Programming (everything is based on functions)
• Logic Programming (everything is based on Boolean statements)
• Object Oriented Programming (OOP) (everything is based on Objects)

• Python is a good first language to learn because it supports procedural, functional
and object-oriented programming (OOP).
• Most programmers use a mix of all these styles.

Object-Oriented Programming

We want our programs to do tasks for us.

One way to organize our thinking and programs is to create
pieces of code that have well-defined “jobs”.

That is how we have organized our society…

Object Oriented Programming

• We know exactly who to go to if we need something done, even if we
know nothing about the person other than their job title.
• We have an idea that someone with a particular profession will be able

to do certain things.
• The job may encompass things we have no idea of how to do.
• The person with the job is an expert. They might improve how they do

things without us having to worry about the tasks they can do changing.

The same reasons we organize our society into people with jobs
and professions apply to programs:

•One of the first applications of modern computing
was modelling and simulation.
• Scientists soon realized that functions alone were

insufficient to model systems intuitively
• If we are going to model a planet we would like to

actually create a virtual planet, define how it behaves
in our simulated universe, and then just observe it.

Object Oriented Programming

•Programmers quickly realized that the idea of creating
virtual “things” made software engineering simpler to
think about.
• If we create within our programs agents and objects

then we can assign duties and tasks to them.
• This is really just another way applying decomposition

to our software.
•Break up the problem to be solved into logical parts

and assign each part to an object.

Object Oriented Programming

• Even engineers are social animals - we evolved to
think about the world in terms of agents and objects
(not recursion).
• In many situations we solve large problems by

delegation. That is we have workers who specialize in
solving a particular problem.
• Those specialists have specific skills that they can

apply to a specific class of problems.

Object Oriented Programming

•We can pattern software after a group of specialists at
a company working on a problem.
• For example, there are two objects we have used –

string and turtle.
• String is the name of an object who knows all about

storing characters and answering questions about
them.
• Turtle knows how to draw something on the screen,

and perform operations like forward, turn left, etc

Object Oriented Programming

• Important: we don’t have to have any idea how turtle
does its job. We just trust that it does.
• Just like we don’t question the US Mail about how our

letter gets from here to Seattle.
•We only care that it arrives within certain tolerances –

not how it got there.
• This is called abstraction, information hiding, and

encapsulation and we like it!

Object Oriented Programming

•When we mail a letter all we have to worry about is
following the post office procedure to ensure our
letter gets to the right place.
•We have to know where to go, how to pay, the format

expected for the destination address and return
address, etc.
• In software this is called the interface.
•All objects have to have an interface that clearly

defines how we can interact with the object.

Object Oriented Programming

Almost any problem can be broken up into objects.
•Objects are defined by three things:
• Their state – this is the information they contain.
• Their behaviour or capabilities – these are the

member functions they have access to.
• Their interface – the rules describing how they

interact with other objects in the system.

Object Oriented Programming

Reasons for OOP
Abstraction

Encapsulation
Information hiding

Inheritance

Class: Object Types

• Like other OOP languages, Python uses classes to
define objects
•A Python class specifies the type of an object.
•When you define a class you are specifying the

attributes and behaviour of a new type.
ØClasses have member variables and member

functions (aka methods)
Ø Behaviour is defined by member functions

Information Hiding

• The interface acts as a contract specifying how the
object will behave – as long as the code fulfils the
contract we don’t care how it works.

• Defining a class does not result in creation of an
object.
• Declaring a variable of a class type creates an object.
You can have many variables of the same type (class).
• This is called instantiation of the class

Information Hiding (cont.)

• This is good because it allows us to change the
underlying code without forcing everyone who uses
our objects to change their code.
• You can change the implementation and nobody

cares! (as long as the interface is the same).
•We never have to worry if the US Post office decides

to use a train instead of a truck, as long as the letter
arrives on time. The interface remains the same.

Private vs. Public (note)
• If you are coming from another OOP language, Python

does not have real support for private variables and
functions.

Special Member Functions

•Constructors: called when a new object is created
(instantiated).

Python Classes: Create a Virtual Dog!
class Dog:

kind = 'canine' # class variable shared by all instances
self.sound = “Woof!”

def __init__(self, name): # Constructor
self.name = name # instance variable unique to each instance

def name(self): # Member function
return(self.name)

def sound(self): # Member function
return(self.sound)

Python Classes: Create a Virtual Dog!
class Dog:

kind = 'canine' # class variable shared by all instances
self.sound = “Woof!”

def __init__(self, name): # Constructor
self.name = name # instance variable unique to each instance

def name(self): # Member function
return(self.name)

def sound(self): # Member function
return(self.sound)

Self: The name this object calls itself.

Python Classes: Create a Virtual Dog!
class Dog:

kind = 'canine' # class variable shared by all instances
self.sound = “Woof!”

def __init__(self, name): # Constructor
self.name = name # instance variable unique to each instance

def name(self): # Member function
return(self.name)

def sound(self): # Member function
return(self.sound)

Special function __init__

This is the constructor.

Python Classes: Create a Virtual Dog!
class Dog:

kind = 'canine' # class variable shared by all instances
self.sound = “Woof!”

def __init__(self, name): # Constructor
self.name = name # instance variable unique to each instance

def name(self): # Member function
return(self.name)

def sound(self): # Member function
return(self.sound)

If you don´t specify self
The member variable is shared
by all objects of type “Dog”.

The member variable, e.g.
“kind” is shared.

Python Classes: Create a Virtual Dog!
class Dog:

kind = 'canine' # class variable shared by all instances
self.sound = “Woof!”

def __init__(self, name): # Constructor
self.name = name # instance variable unique to each instance

def name(self): # Member function
return(self.name)

def sound(self): # Member function
return(self.sound)

Member functions that define
what objects of type Dog can do.

In this example Dogs can give you
their “name” and they can make
a “sound”.

Python Classes: Create a Virtual Dog!
class Dog:

kind = 'canine' # class variable shared by all instances
self.sound = “Woof!”

def __init__(self, name): # Constructor

self.name = name # instance variable unique to each instance

def sound(self): # Member function

return(self.name)

def sound(self): # Member function

return(self.sound)

mydog = dog(“Fido”)
print(mydog.name() + “ says ”+ mydog.sound())

Fido says Woof!

Instantiating the class into a dog
object.

Pass in its name as an argument.

Python Classes: Create a Virtual Dog!
class Dog:

kind = 'canine' # class variable shared by all instances
self.sound = “Woof!”

def __init__(self, name): # Constructor

self.name = name # instance variable unique to each instance

def sound(self): # Member function

return(self.name)

def sound(self): # Member function

return(self.sound)

mydog = dog(“Fido”)
print(mydog.name() + “ says ”+ mydog.sound())

Fido says Woof!

Use the member functions...

Classes vs
Objects

Classes are like
the job
description

The object is
the person
hired to do the
job.

Classes vs
Objects

Classes are like
the job
description

The object is
the person
hired to do the
job.

Enterprise
Class

X-wing
Class

Enterprise Objects

X-wingObjects

Shapes Example – Defining a “Square” class

Shapes Example – Defining a “Square” class

>>> import shapes
>>> my_square = shapes.Square(50)
>>> my_square.getArea()
2500
>>> my_square.draw()
>>>

In shapes.py In python3 interpreter

Shapes Example – Defining a “Rectangle” class
In shapes.py In python3 interpreter

>>> import shapes
>>> my_rectangle = shapes.Rectangle(40,80)
>>> my_rectangle.area()
3200
>>> my_rectangle.draw()
>>>

Shapes Example – Defining a “RegularPolygon” class
In shapes.py

Shapes Example – Defining a “RegularPolygon” class
In python3 interpreter

>>> import shapes
>>> some_polys = []
>>> for i in range(1, 100, 5):
... some_polys.append(shapes.RegularPolygon(i, i))
...
>>> for i in some_polys:
... i.draw()
...
>>>

Bank
Account
Example

In bankaccount.py

Bank Account Example
>>> import bankaccount
>>> x = bankaccount.SwissBankAccount(10002034,100, 0.0012)
>>> x.current_bal
100
>>> x.makeWithdrawal(20)
>>> x.current_bal
80
>>> x.makeDeposit(50)
>>> x.current_bal
130
>>> x.makeWithdrawal(120)
>>> x.makeWithdrawal(120)
You have no money!!
>>> x.current_bal
10
>>> x.makeWithdrawal(5)
>>> x.current_bal
5

