
Functions
Prof Matthew Fricke

Version 1.0. Send corrections to mfricke@unm.edu.

Confusing
Gr

ea
t Powerful

Fun

Yes, programming is confusing when
you start.

Most of what programming languages
do is an attempt to make programs less

confusing.
This is especially true of functions.

Learning to program is like
learning the piano.

Learning to program is like
learning the piano.

You can understand the music
sheet perfectly, but you still
have to practice playing the

music.

And like great literature…

Every good programmer should
go to sleep reading a good

program.*

*Paraphrasing Donald Knuth

You have all been using functions already.

print(text_to_print)

some_var_name = input(text_to_print)

You have all been using functions already.

print(text_to_print)

some_var_name = input(text_to_print)

This is the function name.

You have all been using functions already.

print(text_to_print)

some_var_name = input(text_to_print)

This is the function
argument

You have all been using functions already.

print(text_to_print)

some_var_name = input(text_to_print)

This function returns a
value

You have all been using functions already.

print(text_to_print)

some_var_name = input(text_to_print)

We can put as much code as we
want
Inside a function and then give it a
short name.

The short name helps us understand
the code we are writing.

You have all been using functions already.

print(text_to_print)

some_var_name = input(text_to_print)

Variables gave friendly names
to data.

Functions give friendly names
to whole sections of code.

This is a lot like functions in math:

x = cos(theta)

y = sqrt(x)

3 = sqrt(9)

1 = cos(0)

These functions take an input
number and return an output
Number

Python functions also take an
input argument and return a
value.

Here is what they might look like in python

def square(x):
return x*x

4 = square(2)

Here is what they might look like in python

def cube(x):
return square(x)*x

8 = cube(2)

Get to know your neighbors…
Work in groups of 2 or 3. Your mission is to
• Think of a simple problem you believe the class can code up.
• On a piece of paper write down the algorithm (the steps of the problem, don’t

worry about code)
• Text title for your problem

For example:

• Problem: return which of two numbers is biggest
• Algorithm:

• Get two numbers
• If the first number is biggest return that number
• If the second number is biggest return the second number
• Done

Lots of good suggestions –
the top voted suggestion was odd even

We know how to write small programs

OK let’s code it up…

This is my awesome odd or even program (sanitized)

Ask the the user for a number
user_num_string = input("Enter a number")

We really want a int not a string
user_num = int(user_num_string)

Calculate odd or even
I know how to tell if a number is even!
By definition the remainder of the number / 2 is zero
if user_num % 2 == 0:

Choose the even message
message_to_user = "Your number was even"

else:
Choose the odd message
message_to_user = "ODD!!!!"

We will tell the user whether their
number was odd or even.

print(message_to_user)

Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a number9
ODD!!!!
(base) Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a number42
Your <redacted> number was even
(base) Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a numberI don't know one
Traceback (most recent call last):

File "even_or_odd.py", line 7, in <module>
user_num = int(user_num_string)

ValueError: invalid literal for int() with base 10: "I don't know one"

Now we have something useful…
We can write that code over and over every time we need it, every language,
including Python provides a better way.

write reusable pieces/chunks of code, called functions

functions are not run in a program until they are “called” or “invoked” in a program

function characteristics:
•has a name
•has parameters(0 or more)
•has a docstring(optional but recommended)
•has a body
•returns something

Turn our odd-even code into a function…

def odd_even():
This is my awesome odd or even program (sanitized)

Ask the the user for a number
user_num_string = input("Enter a number")

We really want a int not a string
user_num = int(user_num_string)

Calculate odd or even
I know how to tell if a number is even!
By definition the remainder of the number / 2 is zero
if user_num % 2 == 0:

Choose the even message
message_to_user = "Your number was even"

else:
Choose the odd message
message_to_user = "ODD!!!!"

We will tell the user whether their
number was odd or even.

print(message_to_user)

And to use it…

def odd_even():
This is my awesome odd or even program (sanitized)

Ask the the user for a number
user_num_string = input("Enter a number")

We really want a int not a string
user_num = int(user_num_string)

Calculate odd or even
I know how to tell if a number is even!
By definition the remainder of the number / 2 is zero
if user_num % 2 == 0:

Choose the even message
message_to_user = "Your number was even"

else:
Choose the odd message
message_to_user = "ODD!!!!"

We will tell the user whether their
number was odd or even.

print(message_to_user)

odd_even():

Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a number9
ODD!!!!
(base) Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a number42
Your <redacted> number was even
(base) Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a numberI don't know one
Traceback (most recent call last):

File "even_or_odd.py", line 7, in <module>
user_num = int(user_num_string)

ValueError: invalid literal for int() with base 10: "I don't know one"

And to use it…

def odd_even():
This is my awesome odd or even program (sanitized)

Ask the the user for a number
user_num_string = input("Enter a number")

We really want a int not a string
user_num = int(user_num_string)

Calculate odd or even
I know how to tell if a number is even!
By definition the remainder of the number / 2 is zero
if user_num % 2 == 0:

Choose the even message
message_to_user = "Your number was even"

else:
Choose the odd message
message_to_user = "ODD!!!!"

We will tell the user whether their
number was odd or even.

print(message_to_user)

odd_even():

Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a number9
ODD!!!!
(base) Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a number42
Your <redacted> number was even
(base) Polychrome-3:~ matthew$ python3 even_or_odd.py
Enter a numberI don't know one
Traceback (most recent call last):

File "even_or_odd.py", line 7, in <module>
user_num = int(user_num_string)

ValueError: invalid literal for int() with base 10: "I don't know one"

We get the same output so what was the point…?

Encapsulation, abstraction: naming code blocks makes
Code much easier to understand… (less confusing)

Now we have something useful

Laziness is a virtue

Instead of writing a piece of code ourselves
always ask if someone else has already done it

Think of functions as chunks of useful code.

Now we have something useful
Laziness is a virtue

• If someone already wrote code to solve the problem we
can use their code:

• If they already did it they often know/care more about
that particular problem than we do.

• If it already exists in public then its has probably been
examined and used by other people.

• Even if their code is flawed it gives us a place to work
from.

Now we have something useful
Laziness is a virtue

• If someone already wrote code to solve the problem we
can use their code:

• If they already did it they often know/care more about
that particular problem than we do.

• If it already exists in public then its has probably been
examined and used by other people.

• Even if their code is flawed it gives us a place to work
from.

• Get used to it this is how every programmer works.

Commercial Software

Bill Gates

Steve Jobs

Commercial Software

Bill Gates

Steve Jobs

You stole my idea!

Commercial Software

“Well, Steve … I think it’s more like we both had this rich
neighbour named Xerox and I broke into his house to steal the
TV set and found out that you had already stolen it.”

Open Source Software

GNU:
GNU is Not Unix

Richard Stallman Linus Torvolds

GNU:
GNU is Not Unix

On the one hand information wants to be expensive, because
it's so valuable. The right information in the right place just
changes your life. On the other hand, information wants to be
free, because the cost of getting it out is getting lower and
lower all the time. So you have these two fighting against
each other.

On the one hand information wants to be expensive, because
it's so valuable. The right information in the right place just
changes your life. On the other hand, information wants to be
free, because the cost of getting it out is getting lower and
lower all the time. So you have these two fighting against
each other.

What has this got to do with functions?

Functions encapsulate useful algorithms.
Valuable algorithms are easy to share.

Open source software shares all this value with
everyone because then everyone benefits.

On the one hand information wants to be expensive, because
it's so valuable. The right information in the right place just
changes your life. On the other hand, information wants to be
free, because the cost of getting it out is getting lower and
lower all the time. So you have these two fighting against
each other.

Open source software shares all this value with
everyone because then everyone benefits.

Commercial companies do the same thing. They
just spend a lot of time agreeing not to sue each
other.

On the one hand information wants to be expensive, because
it's so valuable. The right information in the right place just
changes your life. On the other hand, information wants to be
free, because the cost of getting it out is getting lower and
lower all the time. So you have these two fighting against
each other.

There are thousands of functions that
programmers around the world have been
writing for decades that are available for you to
use.

You can access libraries of these functions with
the import command.

Encapsulation and Laziness

It is very helpful to have this universe of
functions other people have written.

Laziness here means using other peoples existing
functions, even when that other person might be
you later.

Encapsulation and Laziness

Functions let you break the problem up into
manageable pieces. Function names help you
organize all the parts of your code.

Solve one piece at a time to make it easier.

For example:

Let’s write a program to add up a sequence of
integers between a start and end value.

For example given 0 and 5 we want:
0 + 1 + 2 + 3 + 4 + 5 = 16

For example:

Coding… coding…

Hmmm – should we use a while or for loop?

A function that sums ints using a while loop
def while_add(start, end):

total = 0
current_num = start
while current_num <= end:

total=total + current_num
current_num=current_num + 1

return total

A function that sums ints using a for loop
def for_add(start, end):

total = 0
for x in range(start, end+1):

total = total + x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(while_add(x,y))
print(for_add(x,y))

bash-3.2$ python3 addints.py
Enter Start Number: 2
Enter End Number: 5
9
9
bash-3.2$python3 addints.py
Enter Start Number: 2
Enter End Number: 5
14
14
bash-3.2$ python3 addints.py
Enter Start Number: -1
Enter End Number: 4
9
9

For loops and while loops both work (in
fact there is a theorem that says
anything you can do with a while loop
you can do with a for loop)

A function that sums ints using a while loop
def while_add(start, end):

total = 0
current_num = start
while current_num <= end:

total=total + current_num
current_num=current_num + 1

return total

A function that sums ints using a for loop
def for_add(start, end):

total = 0
for x in range(start, end+1):

total = total + x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(while_add(x,y))
print(for_add(x,y))

bash-3.2$ python3 addints.py
Enter Start Number: 2
Enter End Number: 5
9
9
bash-3.2$python3 addints.py
Enter Start Number: 2
Enter End Number: 5
14
14
bash-3.2$ python3 addints.py
Enter Start Number: -1
Enter End Number: 4
9
9

For loops and while loops both work (in
fact there is a theorem that says
anything you can do with a while loop
you can do with a for loop)

The for loop is more
elegant*. Which basically
means you don´t have to
think so hard about how it
works - assuming you
understand for loops.

*You won´t be judged on elegance on exams and quizzes in this course.

For example:

Now that we have that code break up into groups
and on a piece of paper write down the function
that would do this… (5 mins)

For example:

Let’s write a program to get the product of
integers from a start to an end value.

For example given 1 and 3 we want:
1 x 2 x 3 = 6

For example:

Coding… coding…

A function that sums ints using a for loop
def for_add(start, end):

total = 0
for x in range(start, end+1):

total = total + x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_add(x,y))

I guess we can just change the + to
*
And the name of the function so it
makes sense .

Also I will put it in a file called multints.py because
having a program that multiplies ints called addints.py
would just be cruel.

A function that sums ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y)) I guess we can just change the + to *
And the name of the function so it
makes sense

A function that sums ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

python3 multints.py
Enter Start Number: 3
Enter End Number: 10
0

I guess we can just change the + to *
And the name of the function so it
makes sense

A function that sums ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

python3 multints.py
Enter Start Number: 3
Enter End Number: 10
0

This isn’t right!

3*4*5*6*7*8*9*10 = 1814400

A function that sums ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

python3 multints.py
Enter Start Number: 3
Enter End Number: 10
0

We have a bug!

3*4*5*6*7*8*9*10 = 1814400

Debugging
¨Granted that the actual
mechanism is unerring in its
processes, the cards may give it
wrong orders.” Ada Lovelace (1843)

Debugging

“You were partly correct, I did find a ‘bug’ in my apparatus
[telephone]” Thomas Edison, 1878

Debugging

You find and eliminate bugs by:

Tracing through your code

Testing your code

Debugging

You find and eliminate bugs by:

Tracing through your code

Testing your code

Prevent bug by writing clear understandable code

Debugging – Tracing Code

You can trace code by following each step and
writing down the results at each step*

You can make that easier by printing results of
statements when you run the code.

This is called debug output.
*You will need to be able to do this on the exams…

A function that sums ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x ?
y ?
for_mult(x,y) ?

for_mult() Scope:
total ?
start ?
end ?
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
User Enters: 3

Expression Current
Value

Global Scope
x 3
y ?
for_mult(x,y) ?

for_mult() Scope:
total ?
start ?
end ?
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
User Enters: 6

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total ?
start ?
end ?
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Before print() the expression inside the () is executed

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total ?
start ?
end ?
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Before print() the expression inside the () is executed

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total ?
start ?
end ?
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Evaluating the function makes us jump to the code inside the function

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total ?
start ?
end ?
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Evaluating the function makes us jump to the code inside the function

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total ?
start 3
end 6
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Evaluating the function makes us jump to the code inside the function

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0
start 3
end 6
x ?
Range(start,end+1) ?

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Evaluating the function makes us jump to the code inside the function

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0
start 3
end 6
x 3
Range(start,end+1) [3,4,5,6,7]

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Evaluating the function makes us jump to the code inside the function

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0
start 3
end 6
x 3
Range(start,end+1) [3,4,5,6,7]

Shadowing!

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
New value of total = the old value of total (zero) times 3

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*3)
start 3
end 6
x 3
Range(start,end+1) [3,4,5,6,7]

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
New value of total = the old value of total (zero) times 3

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*3)
start 3
end 6
x 4
Range(start,end+1) [3,4,5,6,7]

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
New value of total = the old value of total (zero) times 4

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*4)
start 3
end 6
x 4
Range(start,end+1) [3,4,5,6,7]

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
New value of total = always zero times something… so always zero

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*4)
start 3
end 6
x 5
Range(start,end+1) [3,4,5,6,7]

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*5)
start 3
end 6
x 5
Range(start,end+1) [3,4,5,6,7]

New value of total = always zero times something… so always zero

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*5)
start 3
end 6
x 6
Range(start,end+1) [3,4,5,6,7]

New value of total = always zero times something… so always zero

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*6)
start 3
end 6
x 6
Range(start,end+1) [3,4,5,6,7]

New value of total = always zero times something… so always zero

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0 (0*6)
start 3
end 6
x 7
Range(start,end+1) [3,4,5,6,7]

New value of total = always zero times something… so always zero

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) ?

for_mult() Scope:
total 0
start 3
end 6
x 7
Range(start,end+1) [3,4,5,6,7]

New value of total = always zero times something… so always zero

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))
Returns zero so for_mult(3,6) is zero.

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) 0

for_mult() Scope:
total 0
start 3
end 6
x 7
Range(start,end+1) [3,4,5,6,7]

total

total

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) 0

for_mult() Scope:
total 0
start 3
end 6
x 7
Range(start,end+1) [3,4,5,6,7]

Prints zero to the user

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) 0

for_mult() Scope:
total 0
start 3
end 6
x 7
Range(start,end+1) [3,4,5,6,7]

Prints zero to the user

So our bug was that
setting total to 0 at
the start means it
will always return 0

A function that times ints using a for loop
def for_mult(start, end):

total = 0
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

Expression Current
Value

Global Scope
x 3
y 6
for_mult(x,y) 0

for_mult() Scope:
total 0
start 3
end 6
x 7
Range(start,end+1) [3,4,5,6,7]

Prints zero to the user

The fix is to set total to 1 at the start.

(1 is the multiplication identity)

A function that times ints using a for loop
def for_mult(start, end):

total = 1
for x in range(start, end+1):

total = total * x

return total

Read numbers from user

x = int(input("Enter Start Number: "))
y = int(input("Enter End Number: "))

print(for_mult(x,y))

python3 multints.py
Enter Start Number: 3
Enter End Number: 6
360

3 x 4 x 5 x 6 is 360

Now we can be lazy…

Let´s write the factorial function.

Factorial n! is just 1 x 2 x 3 x … x n

Now we can be lazy…

Let´s write the factorial function.

Factorial n! is just 1 x 2 x 3 x … x n

We already solved a harder problem so lets be
lazy and reuse our for_mult function.

A function that multiplies ints using a for loop
def for_mult(start, end):

total = 1
for x in range(start, end+1):

total = total * x

return total

Factorial function
def factorial(x):

return for_mult(1, x)

x = int(input("Enter Number: "))
y = factorial(x)

print(y)

python3 factorial.py
Enter Number: 10
3628800

For example:

Let’s write code that keeps asking the user to
enter a start and end value.

Then we can use our addnums() function to
calculate the response.

The program should stop if the user enters the
letter “q”.

For example:

Now that we have that code break up into groups
and on a piece of paper write down the function
that would do this… (5 mins)

For example:

Let’s test our program thoroughly (this is what Shadow Inc
didn’t do and had big impact on our election process
yesterday)

It is also what Boeing Inc didn’t do resulting in 386 dead in
Max 80 crashes.

Helpful Laziness…

Dividing the problem you are trying to solve up into
manageable parts is the most important thing.

Then work on each piece, one at a time.

If some part seems to hard – try breaking it up again.

Eventually you turn a hard problem into many easy
problems. That is 90% of computer science.

Now that we know functions and loops…

We have access to some powerful abilities….

The next example uses loops and function…

You will understand the rest by the end of the course
(preview)

import turtle
import math
import colorsys

phi = 180 * (3 -
math.sqrt(5))

t = turtle.Pen()
t.speed(0)

def square(t, size):
for tmp in range(0,4):

t.forward(size)
t.right(90)

num = 200

for x in reversed(range(0, num)):

t.fillcolor(colorsys.hsv_to_rgb(x/num,
1.0, 1.0))

t.begin_fill()
t.circle(5 + x, None, 11)
square(t, 5 + x)
t.end_fill()
t.right(phi)
t.right(.8)

turtle.mainloop()

Python code for Mandelbrot Fractal

Import necessary libraries
from PIL import Image
from numpy import complex, array
import colorsys

setting the width of the output image as 1024
WIDTH = 1024

a function to return a tuple of colors
as integer value of rgb
def rgb_conv(i):

color = 255*array(colorsys.hsv_to_rgb(i / 255.0, 1.0, 0.5))
return tuple(color.astype(int))

function defining a mandelbrot
defmandelbrot(x, y):

c0 = complex(x, y)
c = 0
for i in range(1, 1000):

if abs(c) > 2:
return rgb_conv(i)

c = c * c + c0
return (0, 0, 0)

creating the new image in RGB mode
img = Image.new('RGB', (WIDTH, int(WIDTH /2)))
pixels = img.load()

for x in range(img.size[0]):

displaying the progress as percentage
print("%.2f %%"%(x /WIDTH *100.0))
for y in range(img.size[1]):

pixels[x, y] = mandelbrot((x - (0.75*WIDTH)) / (WIDTH /4),
(y - (WIDTH /4)) / (WIDTH /4))

to display the created fractal after
completing the given number of iterations
img.show()

Another view point

The following slides are from MIT’s Version
of this course.

Dr. Ana Bell, Prof. Eric Grimson, Prof. John Guttag

https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-0001-

introduction-to-computer-science-and-
programming-in-python-fall-2016/

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/

Anatomy of a Python Function

