
Flow Control
Prof Matthew Fricke

Version 1.0. Send corrections to mfricke@unm.edu.

Let’s write a python program together that
1. Takes 2 numbers from the user and prints True if

the first number is bigger than the second number.
2. The program prints False otherwise.

The program should run in script mode – not
interactive mode.

(I'm fine).

Logistics

• I am making the following change to the syllabus:

1) You may now drop 3 lab quiz grades.

Some people have had problems logging in with the lab accounts you were
given (cs151-xx). We worked with the computer science support team and
checked a few of the accounts. We can’t find any problems. Your lab
instructors will help you login.

The story so far…

• You now know the basics of how a computer works (processor and
memory)
• We looked at how to:
• create objects with data in them (e.g. 1, 1.5, (7+2j), “a”, True)
• (We understood that objects have types (float, bool, int, str, etc.))
• Convert object types (e.g. float(“1.0”), this is called casting)
• Assign names to those objects (variables, x = 4)
• Create objects that are sequences of other objects (lists, tuples, strings)

(e.g. [“this”, “is”, “a” “list”])
• Write Python code in interactive mode
• Write Python programs in script mode that use input() and print()

Now we will look at flow control

• Flow control gives your programs the ability to make decisions.
• So far we have used Python as a calculator.

• Flow control enables our programs to become far more powerful.

• In fact adding “if” (if something is true then execute some code,
otherwise don’t) means we can write any possible program, execute
any possible algorithm. Recall Universal Computer from Lecture 1.

Making Toast

EAT

If…

• We would like our programs to be more than just
calculators we want them to make decisions.

• Decision making in programming is called branching.
The program goes down one branch if some condition is
true and down another if that condition is false.

• Statements that make decisions about what branch of
instructions to execute next are called control
structures.

• The most common control structure is the if statement.

If…

• Keywords: Programs have “reserved keywords”. These keywords have
special meaning.

If is a keyword in Python. You can’t name a variable “if”.

If…

• The syntax of the if control structure is:

if boolean_expression:
statements…

• If boolean_expression returns True then the statements
inside the braces are executed. If the expression is False
then those statements are skipped.

If…

• (green is the interpreter prompt, yellow is the source
code, and blue is the output)

>>> if 1 == 1:
... "1 equals 1"
...
'1 equals 1'

>>> if 1 != 1:
... "1 is not equal to 1"
...
`1 is not equal to 1'

The worst thing about Python

>>> if 1 == 1:
... "1 equals 1"
...
'1 equals 1'

>>> if 1 != 1:
... "1 is not equal to 1"
...
‘1 is not equal to 1'

• Indenting…
• Python knows which statements are to be executed if the if condition is

true by whether they are indented.

Lines of code
with the same
indentation
are called
code blocks

The worst thing about Python

• Indenting…
• Python knows which statements are to be executed if the if condition is

true by whether they are indented.

>>> if 1 == 1:
... "true: so evaluate this expression"
... "true: and this line too"
...
'true: so evaluate this expression'
'true: and this line too'
>>>

For now use spaces
not tabs.

The amount tabs
indent varies too
much across editors
(including web
browsers)

The worst thing about Python

In a file, or ZyBook code space you could write:

The worst thing about Python

In a file, or ZyBooks you
could write:

And then run it to get:

If I saved this code to a file called
if.py I could run it on the
command line or shell.

Let’s write a python program together that
1. Takes a number from the user.
2. The program prints “Multiple of 3” if that is true.
3. The program prints ”Not a multiple of 3 if that is

not true”

The program should run in script mode – not
interactive mode.

If… elif… else

• Instead of having lots of if statements we can use the easier to
understand if… elif… else.

if x == 0:
print(”x equals 0")

elif x == 1:
print(”x equals 1")

else:
print(”x isn’t equal to 0 or 1")

print("This statement isn’t part of the If.. Else…"

Making Toast

EAT

How many if
statements do we

need here

Iteration

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

while toast != “brown “:
Press the toast lever

Remove toast
Eat toast

x = 0
while x < 10:

x = x + 1
print(“x equals “ + x)

Iteration

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

x = 0
while x < 10:

x = x + 1
print(“x equals “ + x)

x equals 1
x equals 2
x equals 3
x equals 4
x equals 5
x equals 6
x equals 7
x equals 8
x equals 9
x equals 10

Iteration

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

x = 0
while x < 10:

print(“x equals “ + x)
x = x + 1

x equals 0
x equals 1
x equals 2
x equals 3
x equals 4
x equals 5
x equals 6
x equals 7
x equals 8
x equals 9

Iteration

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

x = 0
while x < 10:

print(“x equals “ + x)
x = x + 1

Iteration

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

while x < 10:
print(“x equals “ + x)
x = x + 1

This can be any Boolean
expression.

i.e. any code that returns an
object of type bool

Iteration

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

while x < 10:
print(“x equals “ + x)
x = x + 1

This can be any Boolean
expression.

i.e. any code that returns an
object of type bool

The while loop executes the code block
Over and over until the Boolean
expression is False.

(So repeats the code as long as the
condition it is true.)

Iteration

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

while x < 10:
print(“x equals “ + x)
x = x + 1

This can be any Boolean
expression.

i.e. any code that returns an
object of type bool

Common operators that
return bool objects:

x > y is x more than y?
x < y is x less than y?
x >= y is x more than or equal y?
x <= y is x less than or equal y?
x == y is x equal to y?
x != y is x no equal to y?
x and y Are x and y both true?
x or y Are either x or y true?

Nesting

Code blocks can themselves be, or contain, if statements and
iteration.

x = 0
while x < 10:

x = x + 1
if x % 2 == 0:

print(“x is even”)
else:

print(“x is odd”)

print(“That’s all folks.”)

1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
7 is odd
8 is even
9 is odd
10 is even
That's all folks.

Nesting

Code blocks can themselves be, or contain, if statements and
iteration.

x = 0
while x < 10:

x = x + 1
if x % 2 == 0:

print(“x is even”)
else:

print(“x is odd”)

print(“That’s all folks.”)

Nesting
Here is a program that is supposed to print 1 through 5 times 1
through 3. So 1 2 3 4 5 2 4 6 8 10 3 6 9 12 15.

x = 0
y = 0
while x < 3:

x = x + 1
while y < 5:

y = y + 1
print(x*y)

Nesting

1
2
3
4
5

x = 0
y = 0
while x < 3:

x = x + 1
while y < 5:

y = y + 1
print(x*y)

Here is a program that is supposed to print 1 through 5 times 1
through 3. So 1 2 3 4 5 2 4 6 8 10 3 6 9 12 15.

Debugging…

Hmmm… this isn’t what I expected… why only one loop?

x = 0
y = 0
while x < 3:

x = x + 1
while y < 5:

y = y + 1
print(x*y)

1
2
3
4
5

Debugging…

Let’s see what is going on…
x = 0
y = 0
while x < 3:

x = x + 1
while y < 5:

y = y + 1
print(x*y)

1
2
3
4
5

Debugging…

Let’s see what is going on…
x = 0
y = 0
while x < 3:

x = x + 1
print("Outer loop: x is " + str(x))
print("Outer loop: y is " + str(y))
while y < 5:

y = y + 1
print(" Inner loop: x is " + str(x))
print(" Inner loop: y is " + str(y))
print(x*y)

Debugging…

Let’s see what is going on…
x = 0
y = 0
while x < 3:

x = x + 1
print("Outer loop: x is " + str(x))
print("Outer loop: y is " + str(y))
while y < 5:

y = y + 1
print(" Inner loop: x is " + str(x))
print(" Inner loop: y is " + str(y))
print(x*y)

Outer loop: x is 1
Outer loop: y is 0

Inner loop: x is 1
Inner loop: y is 1

1
Inner loop: x is 1
Inner loop: y is 2

2
Inner loop: x is 1
Inner loop: y is 3

3
Inner loop: x is 1
Inner loop: y is 4

4
Inner loop: x is 1
Inner loop: y is 5

5
Outer loop: x is 2
Outer loop: y is 5
Outer loop: x is 3
Outer loop: y is 5

Debugging…

Let’s fix it…
x = 0

while x < 3:
y = 0
x = x + 1

while y < 5:
y = y + 1
print(x*y)

x = 0
y = 0
while x < 3:

x = x + 1
while y < 5:

y = y + 1
print(x*y)

Debugging…

Let’s fix it…
x = 0

while x < 3:
y = 0
x = x + 1

while y < 5:
y = y + 1
print(x*y)

1
2
3
4
5
2
4
6
8
10
3
6
9
12
15

x = 0
y = 0
while x < 3:

x = x + 1
while y < 5:

y = y + 1
print(x*y)

Iteration: For loops

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

for <variable> in <sequence>:
print(i)

Iteration: For loops

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

for i in [1,2,3,4,5]:
print(i)

Recall that sequence objects include:
Lists
Tuples
Strings
Ranges

Iteration: For loops

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

for i in [1,2,3,4,5]:
print(i)

for i in [“a”,2, “b”, 4, 5]:
print(i)

1
2
3
4
a
2
b
4
5

Iteration: For loops

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

for i in “this is a string”:
print(i)

t
h
i
s

i
s

a

s
t
r
i
n
g

Iteration: For loops

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

for i in “this is a string”:
print(i)

t
h
i
s

i
s

a

s
t
r
i
n
g

Notice that spaces
are also elements
of the string just
like letters and
numbers are.

Iteration: For loops

• Instead of having lots of if statements we can use iteration to do
the same thing over and over…

for i in range(10, 20, 2):
print(i)

10
12
14
16
18

