
Current Assignments

•Homework 1 is due on Wednesday
•Homework 2 is due on Sunday, Feb 2nd

•Quiz 1 is this week in your lab sections

0 10 20 30 40 50 60 70 80 90 100
Progress %

0

10

20

30

40

50

60

70

80

90

St

ud
en

ts
N

um
be

r o
f S

tu
de

nt
s

% Progress 80-1000-10

iClickers

•Raise you hand if you bought an iClicker specifically
for this class.

Variables, Expressions, and
Types

Prof Matthew Fricke

Version 1.0. Send corrections to mfricke@unm.edu.

Objects and Operators

• We can loosely divide computation into data and operations on that
data.
• Objects contain data.
• The Type of an object defines the operations that can be performed

on it.

• Everything in Python is an object so it is called an object oriented
language.

• We will learn a lot more about how objects work later in the course.

Objects and Operators

>>> 6
6

Entering 6 into the python
interpreter creates an object of
type integer that contains the
value 6

Python helpfully shows the value
of the object just created.

Objects and Operators

>>> “some text”
‘some text’

Entering “some text” into the
python interpreter creates an
object of type string that contains
the value ‘some text’

Python helpfully shows the value
of the object just created.

Objects and Operators

>>> 6 + 5
11

Entering 6 + 5 creates two integer
objects with the values 6 and 5,
and give them to the operator +.

Python helpfully shows the result
of applying the operator to the
objects: 11.

Expressions

>>> 6 + 5
11

>>> 6
6

>>> “some text”
‘some text’

Creating objects and combining
them with operators are
expressions.

We will see other kinds of code
that are expressions later.

Types, Objects and Operators

>>> 6 + 5
11

Objects and operators come
together.

Only some operators work on
particular objects.

For example the + operator is
defined for integers

Types, Objects and Operators

>>> 12/2
6.0

>>> "some text"/"some other text"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'str'

… as is the division, /, operator.

But the division operator is not
defined for objects of type string.

Types, Objects and Operators

>>> 12/2
6.0

>>> "some text"/"some other text"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'str'

Python helpfully prints an error
message telling you that / is not
defined for objects of type string.

Types, Objects and Operators

Python provides several built-in object types:

Numeric Types:
Integers (int) –whole numbers, e.g. -1, 15, 42
Floating point (float) – fractions, e.g. 12.8, 0.6, -0.2
Complex (complex) – numbers with a real and imaginary parts, e.g. 3+7j
Boolean (bool): True and false values, e.g. True and False

Python 2 also had long ints but Python 3 ints can hold any size number

Types, Objects and Operators

>>> 4.3*3
12.899999999999999
>>> 5+3j + 2-7j
(7-4j)
>>> True and False
False
>>> True or False
True
>>>

Types, Objects and Operators

>>> "some text" + "some other text"
'some textsome other text’
>>> "some text"*4
'some textsome textsome textsome text'

Python defines lots of operators
that might not do what you
expect.

Types, Objects and Operators

>>> 78/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

Python will try to save you from
common errors.

Types, Objects and Operators

>>> + +
File "<stdin>", line 1

+ +
^

SyntaxError: invalid syntax

Syntax errors occur when the
source code you enter is not
understood by python.

Here we tried to apply an
operator to another operator
instead of an object.

Types, Objects and Operators

>>> (-1)**(1/2)
(6.123233995736766e-17+1j)

>>> 2/3
0.6666666666666666

An operator takes two objects and
returns a result.

As we saw with multiplication of
strings by integers the two input
objects don’t have to have the
same type.

The resulting object returned may
or may not have the same type.

** is the exponentiation operator

6.123233995736766e-17 is ALMOST zero

Types, Objects and Operators
>>> 2/3
0.6666666666666666
>>> 2//3
0
>>> 10//3
3
>>> 10/3
3.3333333333333335
>>> 3/1
3.0

For example there are two
division operators for integer
objects.

// and /

// always returns an integer

/ always returns a float

Types, Objects and Operators
>>> 10%10
0
>>> 10%9
1
>>> 10%8
2
>>> 10%7
3
>>> 10%6
4

>>> 2%3
2

Modulus

The % operator return the
remainder after division.

>>> 10%5
0
>>> 10%4
2
>>> 10%3
1
>>> 10%2
0
>>> 10%1
0

>>> 149%50
49

Types, Objects and Operators
>>> 10 > 3
True
>>> 10 < 3
False
>>> 10 == 10
True
>>> 10 != 3
True
>>> 10 >= 3
True
>>> 10 <= 3
False

Comparison Operators

Always return an object of type bool.

We have to be careful when checking if floats are
equal. Floats are often approximations (recall
6.123233995736766e-17 instead of zero).

>>> 10.000000000000001 == 10.000000000000003
False

>>> abs(10.000000000000001 - 10.000000000000003) < 0.00001
True

Types, Objects and Operators

Sequence Types

Sequences consist of many values together.

String – a sequence of characters
List – a sequence of values that you can change (it’s mutable)
Tuple – a sequence of value that cannot be changed (immutable)
Range – a sequence of integers

Types, Objects and Operators
>>> "This is a sequence of 35 characters"
'This is a sequence of 35 characters’

>>> ["this", "list", "has", 5, "elements"]
['this', 'list', 'has', 5, 'elements’]

>>> ('this', 'tuple', 'has', 5, 'elements')
('this', 'tuple', 'has', 5, 'elements')

>>> range(6)
range(0, 6)

>>> range(6,10,2)
range(6, 10, 2)

Range objects are a sequence of integers

The first number is the start integer, the second
Integer is the last integer, and the last integer is
the step size.

Types, Objects and Operators
>>> "This is a sequence of 35 characters"
'This is a sequence of 35 characters’

>>> ["this", "list", "has", 4, "elements"][0]
'this’

>>> ["this", "list", "has", 4, "elements"][3]
4

We can get the elements from sequences with the [] operator.

So [0] returns the first element in the sequence.

[3] return the fourth element.

Types, Objects and Operators
>>> "This is a sequence of 35 characters"
'This is a sequence of 35 characters’

>>> "This is a sequence of 35 characters"[0]
'T'
>>> "This is a sequence of 35 characters"[3]
's'

We can get the elements from sequences with the [] operator.

So [0] returns the first element in the sequence.

[3] return the fourth element.

Types, Objects and Operators
>>> range(6)[3]
3

>>> range(6,12,2)[0]
6

>>> range(6,12,2)[2]
10

>>> range(6,12,2)[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: range object index out of range

range(6) is the same as [0, 1, 2, 3, 4, 5]

range(6, 12, 2) is the same as [6,8,10]

Variables
>>> x = 3
>>> this_is_a_longer_variable_name = 10
>>> x
3
>>> this_is_a_longer_variable_name
10
>>> x*4
12

>>> x_list = [1,2,3]
>>> x_list[2]
3

Recall that data is stored in memory.

We often want to remember where the data we stored
is so we can use it.

To do this we use the assignment operator =.

The assignment operator gives a name to the value.

We call these variables since the value in memory they
refer to can vary.

Variables
>>> x = 5
>>> y = 8
>>> x * y
40
>>> z = x + y
>>> z
13
>>> z = z + x
>>> z
18

Recall that data is stored in memory.

We often want to remember where the data we stored
is so we can use it.

To do this we use the assignment operator =.

The assignment operator gives a name to the value.

We call these variables since the value in memory they
refer to can vary.

>>> z = z + x
>>> z
23
>>> x = 10
>>> z
23
>>> z = z + x
>>> z
33

Modifying Variables that Name Sequences
>>> x = [1,2,3,4]
>>> x[1] = "a"
>>> x
[1, 'a', 3, 4]

>>> x = (1,2,3,4)
>>> x[1] = "a"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not
support item assignment

We can modify the contents of lists

We cannot modify the contents of tuples

Slicing Sequences

>>> x[1:3]
(2, 3)

>>> y = [1,2,3,4]
>>> y[2:4]
[3, 4]

>>> z="this is a string"

Slicing sequences allow us to
return several elements of a
sequence at once.

>>> z[3:7]
's is’

>>> z[0:3]
'thi’

>>> z[0:4]
'this’

>>> z[1:4]
'his'

Slicing Sequences
>>> x = [1,2,3]
>>> y = ["a", "b", "c"]
>>> x+y
[1, 2, 3, 'a', 'b', 'c’]

>>> "oranges" + " and " + "apples"
'oranges and apples'

Sequences can be
concatenated with the +
operator.

Order of Operations
>>> (2+3)+1*(4/12)
5.333333333333333

>>> ((2+3)+1)*(4/12)
2.0

>>> 4 * 2 == 8 and 4 * 2 < 8
False

>>> 7 % 2 == 1
True

You can use PEMDAS like in arithmetic.
(Parenthesis, Exponents, Multiplication,
Division, Subtraction, and then Addition)

In Python we add the requirement that
operations are evaluated from left to right

P Parentheses,
then E Exponents,
then MD Multiplication and division, left to right,
then AS Addition and subtraction, left to right

Followed by Boolean operations

Converting Types

Converting types

Sometimes we want to change
the type of a variable.

int(“2”) converts a string to an
integer.

>>> int("2")
2
>>> float("2")
2.0
>>> int("2")
2
>>> str(2)
'2'
>>> int("this is a test")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int()
with base 10: 'this is a test'

Input and Output

• Everything we have done so far has been in interactive mode.
• We type one command at a time and python gives us the result

immediately
• We can also run python programs in script mode by putting the

source code into a text file.
• We can then have python execute all the commands in the file.
• This is how most programs are run.
• If our program needs data from the user we have to use the input and

output functions (we will learn much more about functions later)

Input and Output

To read data from the user in script mode we use:
input(str). We can put a string between the
parentheses if we choose, and it will be printed.

To show data to the user we use the print(object)
function. The object between the parentheses is
displayed.

Input and Output (Examples)
$ python3 io.py
Enter your name:
Matthew
MatthewMatthew

We can edit a text file with a
plain text editor. Let’s save the
file with the name io.py.

x = 2
y = input("Enter your name:”)
print(x*y)

Input and Output in Script Mode
$ python3 adder.py
Enter the first number:
5
Enter the second number:
10
Adding 5 and 10
The answer is 15.0

In a file named adder.py

ZyBooks – These empty spaces act like files where you can
enter python source code and run it in script mode.

$ python3 adder.py

In a file named adder.py
adder.py

