
CS151: A Brief Intro to
Computers

Prof Matthew Fricke

Ver: 1.0. Send corrections to mfricke@unm.edu.

Alan Turing (1936)
By the start of the 20th century a lot of physical work had been mechanized.

Elektro at the 1939 New York World Fair

Alan Turing (1936)Alan Turing was a mathematician and
biologist who was interested in how
the brain works.

His major breakthrough was to
recognize that the human brain can
solve many different kinds of problem.

He developed a theoretical machine
that worked like a mathematician.

“On Computable Numbers, with an Application to the
Entscheidungsproblem” - 1936

Alan Turing (1936)There were many possible machines
each of which could execute a single
algorithm.

You could just wire the algorithm into
them. They could solve one problem.

Alan Turing (1936)There were many possible machines
each of which could execute a single
algorithm.

You could just wire the algorithm into
them. They could solve one problem.

Turing realized he could build a
machine that could simulate any other
machine.

Alan Turing (1936)There were many possible machines
each of which could execute a single
algorithm.

You could just wire the algorithm into
them. They could solve one problem.

Turing realized he could build a
machine that could simulate any other
machine.

Alan Turing (1936)

Alan Turing (1936)
The essential elements are

1)Being able to read symbols from a storage
2)Change state depending on the symbol you read
3)Write symbols to the storage
4)Move where you are reading and writing from

5)This is just like a human being

The Z3 built by Konrad Zuze in Berlin 1941

Memory is
where we can

read and
write symbols

The
processor

says what to
do for each
symbol read

Jon von Neumann
and MANIAC

1951

Von Neumann Architecture

• Johann Von Neumann popularized the Stored Program computer.
• Previous computers (like the Turing’s COLLOSUS and ENIAC) had

the program literally wired in.
• The Z3 had its program on punch tape.
• Stored program computers made changing the algorithm a

computer was to execute trivial. (compared to rewiring it!)
• It also meant that the sequence of execution could be changed

while the program was running.

17

Anatomy of a Computer
• Six logical units of modern computers
• Input (Keyboard, mouse, etc)
• Output (Monitor, Printer, etc)
• Volatile Memory (RAM or main memory)
• Long term Memory (Disk, punch tape, etc)
• Central Processing Unit (Processor)
• Arithmetic and Logic Unit (Processor)
(+ Bus, pipeline so all the other units can communicate)

Executing a Program

Processor

Memory
Address Contents

0

1

2

3

4

5

6

R1 R2 R3

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

PC

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

PC

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

PC

DATA

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R3 R3

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

PC

Program

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

3

PC

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 0 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R3 R3

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

3

PC
2

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3
5

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

4

PC
2

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3
5

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

5

PC
2

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3
5 7

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

5

PC
2

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2

3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3
5 7

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

6

PC
2

Executing a Program

Processor

Memory
Address Contents

0 2
1 5
2 7
3 Load Address 0 to Register R1

4 Load Address 1 to Register R2

5 Add R1 and R2 and put in R3

6 Store R3 to Address 2

R1 R2 R3
5 7

Address Bus

Control Bus

Data Bus

Computer Hardware

Processor Instruction set
Load
Store
Add
Subtract
Multiply

Let’s add 2 and 5

6

PC
2

33

Anatomy of a Computer - Volatile Memory

• Volatile memory (RAM) consists of numerous (typically millions or
billions) of binary digits (“bits”).
• A bit can hold the value 1 (the bit is set) or zero (the bit is unset).
• A collection of eight bits can have 256 different states and so can be

used to represent different things. For example 256 different
• Eight bits is called a byte
• Characters (A,B, C, … a, b, c, … &, *, $) can be represented with a

single byte by defining each different sequence of 1s and 0s to
represent a different character.

34

Anatomy of a Computer - Volatile Memory

• There are other terms for various numbers of bits –
for example, half a byte (4 bits) is a nibble, four bytes
are called a “long” or a “dword” (double word), 1024
bytes is a kilobyte.
• The more bits a division has the more states it can

represent but the more memory it uses.

35

Anatomy of a Computer - CPU

• The CPU has several local “registers.” Registers are
memory locations just like RAM.
• The CPU is able to “fetch” values from RAM and place

them into its registers.
•Data in the registers can then be operated on by the

ALU and CPU.

36

Anatomy of a Computer

• Secondary storage is mapped out in much the same way as main
memory (RAM). The media for storing the bits is non-volatile and so
does not need constant power. This is where we save our programs
when they are not running.
• Input devices can be as diverse as keyboards, scanners, and

temperature sensors.
• Output devices are typically monitors, sound cards, and printers.
• Many devices are used for both input and output, such as network

cards.

37

Languages – Machine Language

• Every CPU has a list of actions that it is capable of
performing (the instruction set).
• These instructions must be given to the CPU in binary

code for it to understand them.
•A typical instruction might be:

00000001 01100101 10010010 01

38

Languages – Machine Language, cont

A typical instruction might be:
00000001 01100101 10010010 01

Where 00000001 means “load” (copy), “01100101
10010010” is the address of a word in memory, and 01
is the address of a register.
So this instruction tells the computer to load the value
held at a certain address into the first register.

39

Languages - Assembly Language

Machine language was too difficult to work with so
programmers added a layer of abstraction.
They wrote programs to translate keywords into the
appropriate machine language.
Now they could write “load 77E814F1 esi” and the
“assembler” would translate the code into the 1s and 0s of
machine language.
Typical commands are things like load, add, jump, add1,
poke, and, xor, etc.

Languages – Assembly Language
Typical snapshot of assembly language

Address Instruction Register or RAM Address
77E814EE mov esi,dword ptr [edi+8]
77E814F1 mov dword ptr [ebp+64h],0Ah
77E814F8 add esi,4Ah
77E814FB jmp 77E7E91A
77E81500 push ebx
77E81501 xor ebx,ebx
77E81503 cmp ecx,ebx
77E81505 push esi
77E81506 push edi

A jmp and a cmp allow conditional logic: in other words an if statement

41

Languages – High Level Languages

•A lot of sophisticated software was written using machine
and assembly language but it was still too difficult to
understand.
•High level languages have added a further level of

abstraction such that a single command in Fortran, Java, or
C++ might be translated into hundreds or thousands of
assembly language instructions.

42

Languages – High Level Languages

• High level languages also allow the programmer to define
new commands in terms of old ones.
• This means that most high level languages are unlimited in

expressive power and in their potential to abstract away
complexity.
• Once you have one high level language it become easy to use

it to write other high level languages.

43

Languages - High Level Languages

• The first high level language was created by John Backus at IBM, in
1954.
• It was originally called SpeedCoding but later the name was changed

to the Formula Translation Language or Fortran.
• In 1958 John McCarthy developed the List Processing Language or

Lisp. Algol, Fortran III, Flow-Matic which became Cobol all came out
the same year.
• There are now well over 200 major high level programming languages

in 26 different groups.

Languages - High Level Languages

Python

Invented by Guido van Rossum
(Dutch Programmer) in the 90s.

Is is relatively easy to use but
powerful.

IBM Quantum Computer

Does not store data as bits that are 1s or 0s

The data is instead a probability of being between
0 and 1.

The state of the whole system collapses to the solution

For more info see:
https://plus.maths.org/content/how-does-quantum-
commuting-work

https://plus.maths.org/content/how-does-quantum-commuting-work

Next time: Our first program

(base) polychrome:~ matthew$ python -V
Python 3.7.3
(base) polychrome:~ matthew$ python
Python 3.7.3 (default, Mar 27 2019, 16:54:48)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.

