Object Composition and
Inheritance

Prof Matthew Fricke

. [] [] (] .
List the classes we will need to define a course enrollment

management program

o see live content. Still no live content? Install the app or get help at PollEv.com/app

Relationships between these classes

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Recap: Procedural Programming

* Procedural programming uses:

* Data structures (like integers, strings, lists)
* Functions (like addints ())

*|n procedural programming, information
must be passed to the function

* Functions and data structures are not linked

Recap: Object-Oriented Programming (OOP)

* Object-Oriented programming uses
* Classes!

* Classes combine the data and their
relevant functions into one entity
* The data types we use are actually classes!

* Strings have built-in functions like lower (), join(),
strip (), etc.

Classes vs
Objects

Classes are like
the job
description

The object is
the person
hired to do the
job.

. Imaglne When you are writing a class that it
is a blueprint.

 Instantiating a class is building the object
described by the blueprint.

Classes vs
Objects

Classes are like
the job
description

The object is
the person
hired to do the
job.

Instantiations of the
class definition

* Imagine when you are writing a class that it
1s a blueprint.

* Instantiating a class is building the object
described by the blueprint.

Has a... (composition of objects)

e A course has class sections
* Class sections have students

Has a... (composition of objects)

e A course has class sections
* Class sections have students

Has a... (composition of objects)

e A course has class sections
* Class sections have students

s a... (inheritance of classes)

e A student

s a... (inheritance of classes)

* A student is a person

s a... (inheritance of classes)

* A student is a person
* A personisa mammal

s a... (inheritance of classes)

* A student is a person
* A personisa mammal
* Amammal is an animal

Lot’s of names....

* Unfortunately there are lots
of terms for the same thing:

e Parent Class
= Base Class
= Superclass

* Child Class
= Derived Class
= Subclass

Lot’s of names....

* Unfortunately there are lots
of terms for the same thing:

* Parent Class
= Base Class
= Superclass

* Child Class Student is a

— . child/derived/subclass of
Derived Class Person, Mammal, and

= Subclass Animal.

Lot’s of names....

* Unfortunately there are lots
of terms for the same thing:

 Parent Class Mammal is a

_ child/derived/subclass of
= Base Class Animal, and a

= Superclass parent/base/superclass of
person and student.

* Child Class Student is a

— . child/derived/subclass of
Derived Class Person, Mammal, and

= Subclass Animal.

Pet example

* Here is a simple class that defines a Pet object.

In pet.py
class Pet:
def (self, name, age):
self.name = name
self.age = age The _ str__ built-in function
def (self): defines what happens when |
return self.name print an instance of Pet. Here I’'m
def (self): overriding it to print the name.
return self.age
def (self):

return "This pet’s name i1s " + str(self.name)

Pet example

* Here is a simple class that defines a Pet object.

In pet.py
class Pet:
def 1nit (self, name, age):
self.name = name
self.age = age

def get name (self):
return self.name

def get age(self):
return self.age

def str (self):

>>> from pet import Pet
>>> mypet = Pet('Ben', '1")
>>> print mypet

This pet's name 1s Ben

>>> mypet.get name ()

'Ben'

>>> mypet.get age()

1

return "This pet’s name is " 4+ str(self.name)

Inheritance

* Now, let’s say | want to create a Dog class which inherits from Pet.
The basic format of a derived class is as follows:

class DerivedClassName (BaseClassName) :
<statement-1>

<statement-N>

In the case of BaseClass being defined elsewhere, you can use
module name.BaseClassName.

Inheritance

* Here is an example definition of a Dog class which inherits from Pet.

class Dog (Pet) :
pass

* The pass statement is only included here for syntax reasons. This class
definition for Dog essentially makes Dog an alias for Pet.

Inheritance

* Here is an example definition of a Dog class which inherits from Pet.

class Dog (Pet) :
pass*

* The pass statement is only included here for syntax reasons. This class
definition for Dog essentially makes Dog an alias for Pet.

*pass — this is a special keyword in Python. It is a placeholder that does nothing but prevents syntax errors
for things that expect there to be a statement.

NN ERENTE)

* For example:

if x > 1:
I have no idea what to write here yet..

IndentationError: expected an indented block

NN ERENTE)

* For example:

if x > 1:
I have no idea what to write here yet..
pass

No syntax error — so I can fill 1t out later

inheritance

 We've inherited all the functionality of our Pet class, now let’s make
the Dog class more interesting.

>>> from dog import Dog class Dog(Pet) :
>>> mydog = Dog('Ben', 1) pass

>>> print mydog

This pet's name 1s Ben

>>> mydog.get name ()

'Ben'

>>> mydog.get age()

1

inheritance

* For my Dog class, | want all of the functionality of the Pet class with
one extra attribute: breed. | also want some extra methods for
accessing this attribute.

class Dog(Pet) :

def (self, name, age, breed):
Pet. 1nit (self, name, age)
self.breed = breed

def (self) :

return self.breed

inheritance

* For my Dog class, | want all of the functionality of the Pet class with
one extra attribute: breed. | also want some extra methods for
accessing this attribute.

class Dog(Pet):
gl) Overriding initialization function

def (self, name, age, breed):
Pet. 1nit (self, name, age)
self.breed = breed

def (self) :

return self.breed

Python resolves attribute and method references by first
searching the derived class and then searching the base
class.

inheritance

* For my Dog class, | want all of the functionality of the Pet class with
one extra attribute: breed. | also want some extra methods for
accessing this attribute.

class Dog(Pet) :

def (self, name, age, breed):

Pet. 1init (self, name, age)

self.breed = breed self.name = name
def (self): I self.age = age

return self.breed

We can call base class methods directly using BaseClassName.method (self,
arguments) . Note that we do this here to extend the functionality of Pet’s
initialization method.

inheritance

>>> from dog import Dog

>>> mydog = Dog('Ben', 1, 'Maltese')
>>> print mydog

This pet's name 1s Ben

>>> mydog.get age()

1
>>> dog.get b d
'Mal?ZsZ? get_breed() class Dog(Pet):
def 1nit (self, name, age, breed):
Pet. 1init (self, name, age)

self.breed = breed
def get breed(self):
return self.breed

inheritance

* Python has two notable built-in
functions:

* 1sinstance (object,
classinfo) returns true if
object is an instance of classinfo
(or some class derived from
classinfo).

* 1ssubclass(class,
classinfo) returns true if
class is a subclass of classinfo.

>>> from pet import Pet
>>> from dog import Dog
>>> mydog = Dog('Ben', 1,
>>> isinstance (mydog, Dog)
True

>>> isinstance (mydog, Pet)
True

>>> issubclass (Dog, Pet)
True

>>> issubclass (Pet, Dogq)
False

'Maltese')

Shapes Example — Defining a “Square” class
In shapes.py In python3 interpreter

import turtle

import math >>> import shapes

>>> my_square = shapes.Square(50)

class Square(): >>> my_square.getArea()
Size 2500
>>> my_square.draw()
def __init__(self, s): SSS

self.turtle turtle.Turtle()
self.colour "blue"

def getArea(self):
return self.sizexx2

@ Python Turtle Graphics

def draw(self):
self.turtle.color(self.colour)
for i in range(4):

self.turtle.forward(self.size) ’[:::J
self.turtle.right(90)

def setColour(self, col):
self.colour = collj

Shapes Example — Defining a “Rectangle” class

In shapes.py In python3 interpreter
class Rectangle(): >>> dmport shapes
>>> my_rectangle = shapes.Rectangle(40,80)
def __init_ (self, height, length): >>> my_rectangle.area()
self.length = length 3200
S€ ejaght = heiaht >>> my_rectangle.draw()

self.turtle = turtle.Turtle() 5S>

self.colour "blue"

det area\seL.r):
return self.lengthxself.height

@ Python Turtle Graphics

def draw(self):
for i in range(2):
self.turtle.forward(self.height)
self.turtle.right(90)
self.turtle.forward(self.length)
self.turtle.right(90)

def setColour(self, col):
self.colour = coljj

Shapes Example — Defining a “RegularPolygon” class
In shapes.py

class RegularPolygon():

def init (self, num_sides, size):
self.size = size

self.turtle = turtle.Turtle()
self.colour "blue"

def area(self):
] return self.num_sidesx(self.size *x 2)/ (4 % math.tan(math.pi / self.num_sides))

def draw(self):
for 1 in range(self.num_sides):
self.turtle.forward(self.size)
self.turtle.right(360 / self.num_sides)

def setColour(self, col):

self.colour = collj

Practical Reasons to use Inheritance

* Notice that in every Shape had a co Lour variable and a
setColor () member function.

e Laziness is a virtue: we do not want to write the same code over and
over.

 \We can use inheritance.

Practical Reasons to use Inheritance

* Notice that in every Shape had a co Lour variable and a
setColor () member function.

* Since all the shapes we made had colour, that might be something all
shapes in general have.

* So let’s define class called Shape.

New Parent Class:

self. colour = colour = black

def set_color(self, colour):
self. colour = colour

Rectangle Inherits from Shape{we use the super keyword

to access methods in our
parent class. Here we call
the parent’s constructor to
make sure

is executed.

super(). _init_ ()

And we get all the variables and methods that we defined in Shape for free.

Rectangle Inherits from Shape:

>>my_rect = Rectangle()
>>my_rect.setColour (“blue”)

And we get all the variables and methods that we defined in Shape for free.

New Parent Class:

self.turtle = Turtle.Turtle()

Rectangle Inherits from Shape:

In general we want to move as much as we can into parent classes to make the
child classes simpler and more focused.

Shapes Example

 How would we use our regular polygon class to simplify our shapes
classes through inheritance.

What is the relationship? Do Square and Rectangle derive from Regular
Polygons? Or the other way around or does one of them not derive
from either? Why?

How would we implement triangle now?

Logistics

Exam 2 (15% of Final Grade is the Monday after Spring Break)

You have two weeks before Exam 2. The best way to study is to review all the posted
lecture slides and type up the code that follows. Run that code, try modifying the
code to include other methods, e.g. try implementing getPerimeter() in the
RegularPolygon class.

Make sure you can trace through the code (e.g. list the functions that get called and
in what class they are defined if | call the setColour() function on the House object)

If you understand the code in the shapes module you will be in good shape for the
exam.

Shapes Module (from class)

1fimport turtle # for simple drawings
2/import math # for tangent function

3 : :

4l# Base class We moved the functions and variables
5 Provides colour and a drawing turtle

6class Shape: that were common to our square,

70 def _init__(self): rectangle, and regular polygon classes
8 self.turtle = turtle.Turtle() 5'€, 5 POlye

9 self.setColour("blue") to the shape base class.

10 self.mirror = False

11 self.flipped = False

12 . .

153] def setColour(self. col): We added some more functions like
14 self.colour = col fill() and setFlipped()

15 self.turtle.color(self.colour)

16

17 def setMirror(self, is_mirror):

18 self.mirror = is_mirror

19

20 def setFlipped(self, is_flipped):

21 self.flipped = is_flipped

22

Shapes Module
(code from class)

* Notice the RegularPolygon
inherits from Shape.

* Now we can simplify classes
like RegularPolygon by
removing the code for turtles
and colours that is now in
Shape.

22
23
pL
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57

Regular polygon inherits from Shape
class RegularPolygon(Shape):

def

def

def

def

def

__init__ (self, num_sides, side_len):

super().__init_ ()
self.side_length = side_len
self.num_sides = num_sides

getArea(self):
return self.num_sidesx(self.side_length xx 2)/ (4 % math.tan(n

draw(self):
if self.mirror:
for i in range(self.num_sides):
self.turtle.backward(self.side_length)
if self.flipped:
self.turtle.left(360 / self.num_sides)
else:
self.turtle.right(360 / self.num_sides)
else:
for i in range(self.num_sides):
self.turtle.forward(self.side_length)
if self.flipped:
self.turtle.left(360 / self.num_sides)
else:
self.turtle.right(360 / self.num_sides)

fill(self):
self.turtle.begin_fill()
self.draw()
self.turtle.end_fill()

setSidelLength(self, len):
self.side_length = len

Shapes Module
(code from class)

* Notice the RegularPolygon inherits from
Shape.

* Now we can simplify classes like
RegularPolygon by removing the code for
turtles and colours that is now in Shape.

57
58
59
60

61

63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

oA

Rectangle inherits from Shape
class Rectangle(Shape):

def __init__ (self, height, length):
Super().__init__()

self.length
self.height

length
height

def getArea(self):
return self.lengthxself.height

def draw(self):

if mirror:
for i in
self

range(2):

.turtle.backwards(self.height)
self.

self.
self.

else:
for i in

self.
self.

self.
self.

turtle.right(90)

turtle.backwards(self.width)
turtle.right(90)

range(2):
turtle.forward(self.height)
turtle.right(90)

turtle.forward(self.width)
turtle.right(90)

Shapes Module
(code from class)

* We can define shape classes. Since
they inherit from the RegularPolygon
class they get lots of useful functions
for free.

* E. g. We don’t have to write the
draw function for each one.

* Notice we use super(). init to
make the RegularPolygon base class
instantiate itself so we can use its
data.

85
86
87

88
89
90
91
92

93
94
95
96
97

08
99
100
101
102

103
104
105
106
107
108
109

The following shapes inherit from RegularPolygon
class Square(RegularPolygon):

def init (self, side_len):
super().__init__ (4, side_len)

class EquilateralTriangle(RegularPolygon):

def init (self, side_len):
super().__init_ (3, side_len)

class Pentagon(RegularPolygon):

def init (self, side_len):
super().__init__ (5, side_len)

class Hexagon(RegularPolygon):

def init (self, side_len):
super().__init_ (6, side_len)

class Hectanonagon(RegularPolygon):
def __init_ (self, side_len):
super().__init__ (100, side_len)

Shapes Module
(code from class)

* We can use composition of objects
(recall the student, section, course
example) to build more complex shapes.

* The House, CircOrbits, and Envelope
classes contain Triangle, Square, and
RegularPolygon objects.

* And they inherit from the Shape object.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

class Envelope(Shape):

def

__init__ (self, size):

self.flap = EquilateralTriangle(size)
self.base = Square(size)

def draw(self):

def

self.base.draw()
self.flap.draw()

setColour(self, col):
self.base.setColour(col)
self.flap.setColour(col)

class CircOrbits():

def

__init__ (self, size_increment, number):

self.circles = []
for i in range(number):
self.circles.append(Hectanonagon(size_incrementxi))

def draw(self):

for i in self.circles:
i.turtle.speed(10) # Make the turtle go faster
i.draw()

class House(Shape):

def

__init__ (self, size):

self.walls = Square(size)
self.roof = EquilateralTriangle(size)
self.roof.setFlipped(True)
self.walls.setColour("red")
self.roof.setColour("grey")

def draw(self):

def

self.walls.fill()
self.roof.fill()

setColour(self, col):
self.walls.setColour(col)
self.roof.setColour(col)

Using the shapes module

If the shapes code from the previous slides is
saved in the shapes.py file. Then we can use
that code with the following, for example:

>>> import shapes

>>> e = shapes.Envelope(100)
>>> e.draw()

>>> h = shapes.House(100)

>>> h.draw()
>>>

