
Object Composition and
Inheritance

Prof Matthew Fricke

Recap: Procedural Programming

•Procedural programming uses:
•Data structures (like integers, strings, lists)
• Functions (like addints())

• In procedural programming, information
must be passed to the function
• Functions and data structures are not linked

Recap: Object-Oriented Programming (OOP)

•Object-Oriented programming uses
• Classes!

•Classes combine the data and their
relevant functions into one entity
• The data types we use are actually classes!
• Strings have built-in functions like lower(), join(),
strip(), etc.

Classes vs
Objects

Classes are like
the job
description

The object is
the person
hired to do the
job.

Classes vs
Objects

Classes are like
the job
description

The object is
the person
hired to do the
job.

Instantiating

Instantiations of the
class definition

Has a… (composition of objects)

• A course has class sections
• Class sections have students

Student

Name
ID_num

Has a… (composition of objects)

• A course has class sections
• Class sections have students

ClassSection

section_number

student

student

student

Student

Name
ID_num

Has a… (composition of objects)

• A course has class sections
• Class sections have students

class_section

class_section

class_section

course_number
course_name

List ClassSection

section_number

student

student

student

Student

Name
ID_num

Is a… (inheritance of classes)

• A student

Student

Is a… (inheritance of classes)

• A student is a person

Student

Person

Is a… (inheritance of classes)

• A student is a person
• A person is a mammal Student

Person

Mammal

Is a… (inheritance of classes)

• A student is a person
• A person is a mammal
• A mammal is an animal

Student

Person

Mammal

Animal

Lot’s of names….

• Unfortunately there are lots
of terms for the same thing:

• Parent Class
= Base Class
= Superclass

• Child Class
= Derived Class
= Subclass

Student

Person

Mammal

Animal

Lot’s of names….

• Unfortunately there are lots
of terms for the same thing:

• Parent Class
= Base Class
= Superclass

• Child Class
= Derived Class
= Subclass

Student

Person

Mammal

Animal

Student is a
child/derived/subclass of
Person, Mammal, and
Animal.

Lot’s of names….

• Unfortunately there are lots
of terms for the same thing:

• Parent Class
= Base Class
= Superclass

• Child Class
= Derived Class
= Subclass

Student

Person

Mammal

Animal

Student is a
child/derived/subclass of
Person, Mammal, and
Animal.

Mammal is a
child/derived/subclass of
Animal, and a
parent/base/superclass of
person and student.

Pet example

• Here is a simple class that defines a Pet object.

class Pet:
def __init__(self, name, age):

self.name = name
self.age = age

def get_name(self):
return self.name

def get_age(self):
return self.age

def __str__(self):
return "This pet’s name is " + str(self.name)

The __str__ built-in function
defines what happens when I
print an instance of Pet. Here I’m
overriding it to print the name.

In pet.py

Pet example

• Here is a simple class that defines a Pet object.

class Pet:
def __init__(self, name, age):

self.name = name
self.age = age

def get_name(self):
return self.name

def get_age(self):
return self.age

def __str__(self):
return "This pet’s name is " + str(self.name)

>>> from pet import Pet
>>> mypet = Pet('Ben', '1')
>>> print mypet
This pet's name is Ben
>>> mypet.get_name()
'Ben'
>>> mypet.get_age()
1

In pet.py

Inheritance

• Now, let’s say I want to create a Dog class which inherits from Pet.
The basic format of a derived class is as follows:

class DerivedClassName(BaseClassName):
<statement-1>
...
<statement-N>

In the case of BaseClass being defined elsewhere, you can use
module_name.BaseClassName.

Inheritance

• Here is an example definition of a Dog class which inherits from Pet.

• The pass statement is only included here for syntax reasons. This class
definition for Dog essentially makes Dog an alias for Pet.

class Dog(Pet):
pass

Inheritance

• Here is an example definition of a Dog class which inherits from Pet.

• The pass statement is only included here for syntax reasons. This class
definition for Dog essentially makes Dog an alias for Pet.

class Dog(Pet):
pass*

*pass – this is a special keyword in Python. It is a placeholder that does nothing but prevents syntax errors
for things that expect there to be a statement.

Pass (an aside)

• For example:

if x > 1:
I have no idea what to write here yet…

IndentationError: expected an indented block

Pass (an aside)

• For example:

if x > 1:
I have no idea what to write here yet…
pass

No syntax error – so I can fill it out later

inheritance

• We’ve inherited all the functionality of our Pet class, now let’s make
the Dog class more interesting.

>>> from dog import Dog
>>> mydog = Dog('Ben', 1)
>>> print mydog
This pet's name is Ben
>>> mydog.get_name()
'Ben'
>>> mydog.get_age()
1

class Dog(Pet):
pass

inheritance

• For my Dog class, I want all of the functionality of the Pet class with
one extra attribute: breed. I also want some extra methods for
accessing this attribute.

class Dog(Pet):
def __init__(self, name, age, breed):

Pet.__init__(self, name, age)
self.breed = breed

def get_breed(self):
return self.breed

inheritance

• For my Dog class, I want all of the functionality of the Pet class with
one extra attribute: breed. I also want some extra methods for
accessing this attribute.

class Dog(Pet):
def __init__(self, name, age, breed):

Pet.__init__(self, name, age)
self.breed = breed

def get_breed(self):
return self.breed

Python resolves attribute and method references by first
searching the derived class and then searching the base
class.

Overriding initialization function

inheritance

• For my Dog class, I want all of the functionality of the Pet class with
one extra attribute: breed. I also want some extra methods for
accessing this attribute.

class Dog(Pet):
def __init__(self, name, age, breed):

Pet.__init__(self, name, age)
self.breed = breed

def get_breed(self):
return self.breed

We can call base class methods directly using BaseClassName.method(self,
arguments). Note that we do this here to extend the functionality of Pet’s
initialization method.

self.name = name
self.age = age

inheritance

>>> from dog import Dog
>>> mydog = Dog('Ben', 1, 'Maltese')
>>> print mydog
This pet's name is Ben
>>> mydog.get_age()
1
>>> mydog.get_breed()
'Maltese'

class Dog(Pet):
def __init__(self, name, age, breed):

Pet.__init__(self, name, age)
self.breed = breed

def get_breed(self):
return self.breed

inheritance

• Python has two notable built-in
functions:
• isinstance(object,
classinfo) returns true if
object is an instance of classinfo
(or some class derived from
classinfo).
• issubclass(class,
classinfo) returns true if
class is a subclass of classinfo.

>>> from pet import Pet
>>> from dog import Dog
>>> mydog = Dog('Ben', 1, 'Maltese')
>>> isinstance(mydog, Dog)
True
>>> isinstance(mydog, Pet)
True
>>> issubclass(Dog, Pet)
True
>>> issubclass(Pet, Dog)
False

Shapes Example – Defining a “Square” class

>>> import shapes
>>> my_square = shapes.Square(50)
>>> my_square.getArea()
2500
>>> my_square.draw()
>>>

In shapes.py In python3 interpreter

Shapes Example – Defining a “Rectangle” class
In shapes.py In python3 interpreter

>>> import shapes
>>> my_rectangle = shapes.Rectangle(40,80)
>>> my_rectangle.area()
3200
>>> my_rectangle.draw()
>>>

Shapes Example – Defining a “RegularPolygon” class
In shapes.py

Practical Reasons to use Inheritance

• Notice that in every Shape had a colour variable and a
setColor() member function.

• Laziness is a virtue: we do not want to write the same code over and
over.

• We can use inheritance.

Practical Reasons to use Inheritance

• Notice that in every Shape had a colour variable and a
setColor() member function.
• Since all the shapes we made had colour, that might be something all

shapes in general have.

• So let’s define class called Shape.

New Parent Class:
class Shape:

def __init__(self):
self.__colour = colour = black

def set_color(self, colour):
self.__colour = colour

class Rectangle(Shape):

def __init__(self, length, height):
super().__init__()
self. height = height
self. length = length
self.turtle = Turtle.Turtle()

Rectangle Inherits from Shape:

And we get all the variables and methods that we defined in Shape for free.

We use the super keyword
to access methods in our
parent class. Here we call
the parent’s constructor to
make sure colour = “black”
is executed.

class Rectangle(Shape):

def __init__(self, length, height):
super().__init__()
self. height = height
self. length = length
self.turtle = Turtle.Turtle()

Rectangle Inherits from Shape:

And we get all the variables and methods that we defined in Shape for free.

>> my_rect = Rectangle()
>> my_rect.setColour(“blue”)

New Parent Class:
class Shape:

def __init__(self):
self.__colour = colour = “black”
self.turtle = Turtle.Turtle()

def set_color(self, colour):
self.__colour = colour

class Rectangle(Shape):

def __init__(self, length, height):
super().__init__()
self. height = height
self. length = length

Rectangle Inherits from Shape:

In general we want to move as much as we can into parent classes to make the
child classes simpler and more focused.

Shapes Example

• How would we use our regular polygon class to simplify our shapes
classes through inheritance.

What is the relationship? Do Square and Rectangle derive from Regular
Polygons? Or the other way around or does one of them not derive
from either? Why?

How would we implement triangle now?

Logistics

Exam 2 (15% of Final Grade is the Monday after Spring Break)

You have two weeks before Exam 2. The best way to study is to review all the posted
lecture slides and type up the code that follows. Run that code, try modifying the
code to include other methods, e.g. try implementing getPerimeter() in the
RegularPolygon class.

Make sure you can trace through the code (e.g. list the functions that get called and
in what class they are defined if I call the setColour() function on the House object)

If you understand the code in the shapes module you will be in good shape for the
exam.

Shapes Module (from class)

We moved the functions and variables
that were common to our square,
rectangle, and regular polygon classes
to the shape base class.

We added some more functions like
fill() and setFlipped()

Shapes Module
(code from class)

• Notice the RegularPolygon
inherits from Shape.

• Now we can simplify classes
like RegularPolygon by
removing the code for turtles
and colours that is now in
Shape.

Shapes Module
(code from class)

• Notice the RegularPolygon inherits from
Shape.

• Now we can simplify classes like
RegularPolygon by removing the code for
turtles and colours that is now in Shape.

Shapes Module
(code from class)

• We can define shape classes. Since
they inherit from the RegularPolygon
class they get lots of useful functions
for free.

• E. g. We don’t have to write the
draw function for each one.

• Notice we use super().__init__ to
make the RegularPolygon base class
instantiate itself so we can use its
data.

Shapes Module
(code from class)

• We can use composition of objects
(recall the student, section, course
example) to build more complex shapes.

• The House, CircOrbits, and Envelope
classes contain Triangle, Square, and
RegularPolygon objects.

• And they inherit from the Shape object.

Using the shapes module

>>> import shapes
>>> e = shapes.Envelope(100)
>>> e.draw()
>>> h = shapes.House(100)
>>> h.draw()
>>>

If the shapes code from the previous slides is
saved in the shapes.py file. Then we can use
that code with the following, for example:

