
Logistics

Look for the email Mathworks sent you
inviting you to CS151 so you can complete this
week’s homework.

There is no reading assignment this week.

MATLAB:
Arrays (Vectors)

Prof Matthew Fricke

Version 1.0. Send corrections to mfricke@unm.edu.

The Fibonacci Sequence

People see Fibonacci
Numbers Everywhere

• Fibonacci’s sequence answers the question:

• If you have a breeding male and female rabbit at time
0, how many pairs of rabbits will you have at time t?

https://bungalowofbunnies.weebly.com/blog/archives/05-2017

https://bungalowofbunnies.weebly.com/blog/archives/05-2017

People see Fibonacci Numbers Everywhere

Fibonacci’s sequence answers the question:

If you have a male and female rabbit at time 0, how quickly will the number of rabbits increase?

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

People see Fibonacci Numbers Everywhere

Fibonacci’s sequence answers the question:

If you have a male and female rabbit at time 0, how quickly will the number of rabbits increase?

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

Assumes lots of untrue things:
1) Rabbits always have 2 baby rabbit
2) One baby rabbit is female and one male
3) The all reproduce at the same time

Month
1

2

3

4

5

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html

Golden Ratio

People see Fibonacci Numbers Everywhere

While Fibonacci numbers are undoubtedly important, sometimes people go overboard.

People see Fibonacci Numbers Everywhere – Too many places

While Fibonacci numbers are undoubtedly important, sometimes people go overboard.

People see Fibonacci Numbers Everywhere – Too many places

While Fibonacci numbers are undoubtedly important, sometimes people go overboard.

Fibonacci Sequence

http://www.algomation.com/algorithm/towers-hanoi-recursive-visualization

Calculating the sequence is popular in intro
programming because it is a really good example of
building something complex from very simple rules.

All you need to know is the previous two values in the
sequence.

The Fibonacci sequence and the golden ratio show up
over and over in computer science and mathematics.

http://www.algomation.com/algorithm/towers-hanoi-recursive-visualization

Golden
Foraging
Algorithm

M o s e s
B i o l o g i c a l Co m p u t at i o n L a b

Homework Problem 4

The Fibonacci sequence defined by

where the term is given by

https://grader.mathworks.com/courses/11316-cs151-computer-science-
fundamentals/assignments/31585-matlab-homework-1-expressions-flow-control-and-
functions/problems/139176-iterative-fibonacci-vector-output-integer-datatype

https://grader.mathworks.com/courses/11316-cs151-computer-science-fundamentals/assignments/31585-matlab-homework-1-expressions-flow-control-and-functions/problems/139176-iterative-fibonacci-vector-output-integer-datatype

Fibonacci Sequence

In file Fibonacci.py
def fibonacci(N):

fib = [0] * N
fib[0] = 1
fib[1] = 1
for i in range(2,N):

fib[i] = fib[i-1] + fib[i-2]

return fib

In file Python3 interpreter
>>> import Fibonacci
>>> Fibonacci.fibonacci(5)
[1, 1, 2, 3, 5]
>>>

MATLAB Syntax in Yellow Python Syntax in Green

In file Fibonacci.m
function fib = fibonacci(N)
fib = zeros(1,N, 'uint32')
fib(1) = 1
fib(2) = 1
for i = 3:N
fib(i) = fib(i-1) + fib(i-2)
End

In file MATLAB interpreter

fib = fibonacci(5)
fib = 1×5 uint32 row vector

1 1 2 3 5

The Fibonacci Sequence is an example of a one dimensional
array.

Two dimensional arrays (matrices) are extremely important in all
areas of math, science, and engineering.

Next we will see how to define a matrix in Python and write a
program to multiply two matrices together.

The Fibonacci Sequence is an example of a one dimensional
array.

Two dimensional arrays (matrices) are extremely important in all
areas of math, science, and engineering.

Next we will see how to define a matrix in Python and write a
program to multiply two matrices together.

Matrix multiplication is a common computer task. It is
important in everything from modelling pandemics, Google’s
web page search algorithm, and any video game graphics.

2 dimensional arrays in Python (Matrix)
>>> A = [1,2,3]
>>> A
[1, 2, 3]
>>> A = [[1,2,3],[4,5,6],[7,8,9]]
>>> A[1]
[4, 5, 6]
>>> A[1][2]
6

From geeksforgeeks.com

Where AB is the resulting
matrix from our
multiplication.

We multiply the elements in
the rows of matrix B by the
columns of the matrix A.

From mathbootcamps.com

A B R R = AB

Matrix Multiplication
We want to write a function that takes two
Matrices and returns their product (i.e. A x B).
>>> x = matrix_multiply(A,B)

Matrix Multiplication
In file Python3 interpreter
>>> import matmul
>>> A = [[1]*500]*500
>>> B = [[1]*500]*500
>>> x = matmul.matrix_multiply(A,B)

Convenient way to
generate large matrices in
a short command (all 1s)

Do you see how it works?

Matrix Multiplication: First we figure out how big the resulting matrix has to be.

In file matmul.py

Program to multiply to matrices together. Arguments are matrices A and B.
The result R = A x B
def matrix_multiply(A, B):

Determine the number of rows and columns in matrix A and matrix B
A_num_rows = len(A)
B_num_rows = len(B)
A_num_cols = len(A[0])
B_num_cols = len(B[0])

Result will have the same number of rows as A and the number of cols of B
R_num_rows = A_num_rows
R_num_cols = B_num_cols
R = [[0]*R_num_cols]*R_num_rows

Matrix Multiplication
In file matmul.py continued from previous slide…

for i in range(len(A)):

iterating by column by B
for j in range(B_num_cols):

iterating by rows of B
for k in range(B_num_rows):

R[i][j] += A[i][k] * B[k][j]

return R

Timing how fast our code is…
In file matmul.py continued from previous slide…

import time

Begin timing
tic = time.perf_counter()

Do something cool that we want to time…

The cool thing is done so record the end time
toc = time.perf_counter()

pretty print
print(f"Completed multiplication in {toc - tic:0.4f} seconds")

Matrix Multiplication
In file matmul.py
import time

Program to multiply to matrices together. Arguments are matrices A and B.
The result R = A x B
def matrix_multiply(A, B):

Begin timing
tic = time.perf_counter()

Determine the number of rows and columns in matrix A and matrix B
A_num_rows = len(A)
B_num_rows = len(B)
A_num_cols = len(A[0])
B_num_cols = len(B[0])

Result will have the same number of rows as A and the number of cols of B
R_num_rows = A_num_rows
R_num_cols = B_num_cols
R = [[0]*R_num_cols]*R_num_rows

for i in range(len(A)):

iterating by column by B
for j in range(B_num_cols):

iterating by rows of B
for k in range(B_num_rows):

R[i][j] += A[i][k] * B[k][j]

End timing and pretty print
toc = time.perf_counter()
print(f"Completed multiplication in {toc - tic:0.4f} seconds")

return R

In file Python3 interpreter
>>> import importlib
>>> importlib.reload(matmul)
>>> A = [[1]*500]*500
>>> B = [[1]*500]*500
>>> x = matmul.matrix_multiply(A,B)
Completed multiplication in 27.7860
seconds

Matrix Multiplication
In file matmul.py
import time

Program to multiply to matrices together. Arguments are matrices A and B.
The result R = A x B
def matrix_multiply(A, B):

Begin timing
tic = time.perf_counter()

Determine the number of rows and columns in matrix A and matrix B
A_num_rows = len(A)
B_num_rows = len(B)
A_num_cols = len(A[0])
B_num_cols = len(B[0])

Result will have the same number of rows as A and the number of cols of B
R_num_rows = A_num_rows
R_num_cols = B_num_cols
R = [[0]*R_num_cols]*R_num_rows

for i in range(len(A)):

iterating by column by B
for j in range(B_num_cols):

iterating by rows of B
for k in range(B_num_rows):

R[i][j] += A[i][k] * B[k][j]

End timing and pretty print
toc = time.perf_counter()
print(f"Completed multiplication in {toc - tic:0.4f} seconds")

return R

In file Python3 interpreter
>>> import matmul
>>> A = [[1]*500]*500
>>> B = [[1]*500]*500
>>> x = matmul.matrix_multiply(A,B)
Completed multiplication in 27.7860
seconds

Here is an equivalent MATLAB program:

>> B = ones(500);
>> A = ones(500);
>> tic;
R=A*B;
toc;
Elapsed time is 0.011255
seconds.

