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Abstract

The Dynamic Admittance Parameterization of Non-Prehensile Multi-Robot Trans-
port with Optimal Coordinated Planning (DYNAMO) architecture offers a practical
framework for cooperative payload transportation using two robots equipped with
nonholonomic mobile bases and four-degree-of-freedom manipulators. Coordinated
mobile manipulation is a difficult problem in robotics, and the non-prehensile case is
even more challenging than its prehensile counterpart because the robot bases and
the payload are dynamically coupled. DYNAMO adapts arm motion in response to
interaction forces and generates coordinated base trajectories that account for this
coupling. Robust payload transport is achieved through the combination of opti-
mal planning and adaptive compliant control, which enables each robot to maintain
appropriate contact forces. In hardware experiments with two Joint Integrated Ad-
mittance, Navigation, and Transport (JIANT) robots, DYNAMO yields longer and
more reliable transport than static admittance- or position-based methods. These
results provide a practical foundation for cooperative non-prehensile manipulation

in domains such as logistics, construction, and hazardous material handling.
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Glossary

Admittance

Collective

Collaboration

Cooperation

Coordination

Damping

Force

Admittance is the regulation of motion in response to forces at the

port of interaction (inverse of impedance).

A collective is a type of distributed work in which agents are unaware

of other agents yet do share a common goal.

Collaboration is a type of distributed work in which agents are
aware of other agents, have individual goals, but actively help each
other achieve their respective objectives through complementary ac-

tions.

Cooperation is a type of distributed work in which agents are aware

of other agents and share a common goal.

Coordination is a type of distributed work in which agents are aware
of other agents but do not share a common goal and their actions

do not help one another.

Damping is the extent to which an object resists velocity in response

to an applied force.

A force is a push or pull upon an object resulting from the object’s

interaction with another object.

x1



Glossary

Impedance  Impedance is the regulation of forces in response to motion at the

port of interaction (inverse of admittance).

Inertia Inertia is the extent to which an object resists acceleration in re-

sponse to an applied force.

Inverse kinematics Inverse kinematics is the mathematical process of calculating
the variable joint parameters needed to place the end of a kinematic
chain (such as a robot manipulator) in a given position and orien-

tation.

Kinematics Kinematics is the branch of mechanics concerned with the motion

of objects without reference to the forces which cause the motion.
Manipulation Manipulation refers to the the mechanical interaction of object(s).

Multi-Robot System A multi-robot system is a robotic system in which two or
more robots work together in a collective, collaborative, cooperative,

or coordinated manner.

Non-Prehensile Manipulation Non-prehensile manipulation is the act of ma-

nipulating an object through pushing.

Port of Interaction The port of interaction is the contact point at which a system

interacts with its environment.

Prehensile Manipulation Prehensile manipulation is the act of grasping and ma-
nipulating an object through gripping, clasping or other holding

action.

Robot Description A robot description is a model or configuration file that de-
scribes the pose, size, and kinematic properties of a robot’s links

and joints.
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Glossary

(Hookean) Stiffness Hookean stiffness is the constant of proportionality that re-

lates linear deformation to applied force.
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Chapter 1

Introduction

Multi-robot transportation enables greater capability and adaptability compared to
single-robot systems. These added benefits stem from the cooperative interactions
between robots. Formally, a multi-robot system (MRS) is a system in which two
or more robots work together to complete a given task [1]. A given task can be
completed as a collective, with each robot working towards their own individual
goal. However, the greater benefit of a MRS emerges when each robot cooperates
with their peers. Although more beneficial, a MRS with cooperative robot-robot
interactions is significantly more complex than one without interactions. Among the
various common multi-robot tasks such as mapping [2], foraging [3], and surveillance
[4], cooperative transportation of objects presents particular challenges in dynamics
and control. In most manipulation tasks, a gripper end-effector is utilized to firmly
grasp and hold the object. This type of manipulation, called prehensile manipulation,
is attractive because once a firm grasp is established, the manipulator can reliably
control the motion of the object and reasonably trust that the object will remain
held without continuously monitoring the interaction forces or state of the object.
However, this requires that the object have readily available grasping points, or

be small enough to clasp. Immediately, prehensile manipulation greatly limits the
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types of objects that can be transported. The transportation of irregular objects
or objects without grasp-points requires the regulation of especially complex forces
at the port of interaction, the point at which the end-effector interacts with the
payload. Non-prehensile manipulation is the act of manipulating an object through
controlled pushing. This type of manipulation can be generally applied to all types
of objects. Although challenging and unconventional, the benefits of a cooperative
MRS capable of non-prehensile manipulation and coordinated transportation can

impact many domains.

The applications of cooperative transport include warehouse logistics, automated
construction, disaster response, human-robot interaction, hazardous material han-
dling, extraterrestrial construction, and in-situ resource utilization. For example, in
a warehouse environment, large packages or barrels need to be efficiently rearranged
or loaded. During disaster response, irregular and often grasp-free rubble needs to be
moved. When transporting hazardous materials, a variety of containers may need to
be moved in a safe and stable manner to avoid damage or harm to the environment.
Although each use case involves objects of greatly varying size, shape and mate-
rial, non-prehensile cooperative manipulation presents itself as a solution to many
variations of the transportation task while maintaining stable and safe forces on the

object.

A major challenge in cooperative transport is achieving success with minimal
information [5]. Maintaining appropriate pressure and consistent contact with the
payload is critical for non-prehensile manipulation. Even with accurate global pose
estimates, small calibration errors, delays, and payload mechanics introduce uncer-

tainty.

In the DYNAMO architecture, two mobile robots cooperate to transport a pay-
load without grasp-points using non-prehensile manipulation. Because the end-

effectors can only apply frictional pressure rather than adhere directly, DYNAMO
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serves as a distributed analogue of dual arm manipulation, with each robot func-
tioning as an independently mobile end-effector coordinated through shared contact
and force sensing. To address mobile base pose tracking error and uncertainty during
transport, a dynamic admittance parameterization strategy coupled with coordinated

optimal planning is proposed.

Unlike traditional planning methods such as probabilistic road maps, which gener-
ate fixed paths based on environmental maps and assumed kinematics, this approach
continuously adjusts the motion of each robot in response to real-time force feedback
from the payload, enabling robust performance under uncertainty and unmodeled

dynamics.

Agent-Agent Knowledge

Unaware Aware
E
e ) Collaboration
ES (independent)
S Coordination
— &
S -
=}
@)
e}
o .
E Collective Cooperation
n

Figure 1.1: Types of interactions in multi-robot systems based on goal structure and agent
awareness. Note that although collaboration and coordination share the same structure,
the key difference is that in collaborative systems agent’s actions benefit each other, while
in coordinated systems agent’s action cannot benefit from other agents [6].

The DYNAMO architecture comprises of two components, the optimal trajectory
planner and the dynamic admittance parameterization controller, which fall into
subtly different MRS paradigms. The nature of the trajectory planner is coordinated
because each robot has their own trajectory to follow and doesn’t influence the other

robots actions. The nature of the manipulation component is cooperative because
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the robots share a goal of maintaining sufficient friction force on the payload to hold
it up. Figure 1.1 diagrams the subtle differences in the types of MRS paradigms

including collective, collaborative, cooperative, and coordinated [6].

The DYNAMO architecture is validated on hardware with two JIANT robots.
In experiments, two JIANT robots (see Figure 2.6) successfully transported a pay-
load along a curved 2.2m path in 100% of the 20 trials conducted using DYNAMO,
whereas a position controller achieved 0% success rate and a static admittance con-
troller achieved only 5% to 25% success rate. Compared to dynamic admittance
parameterization, both position-based and static admittance control are observed to
fail to adapt to these disturbances. The DYNAMO architecture is able to respond to
contact forces and disturbances, compensating for misalignment and motion-induced

eITrors.

1.1 Related Works

Cooperative transport is well studied in swarm robotics and animal behavior. Among
animals, only ants and humans appear capable of cooperative lifting and stabilizing
payloads through application of pressure by multiple individuals. Most other ani-
mal species employ relatively simple collective strategies such as pushing or dragging
objects. See McCreery and Breed [7] and Berman et al. [8] for overviews of force
negotiation and group dynamics in ants with application to group robotic trans-

portation.

Our system avoids assumptions of perfect sensing or rigid couplings or grasping,
unlike most prior work in simulation or fixed-base robot arms [9, 10, 11]. Gong et
al. present a multi-robot system with novel six degree-of-freedom rigid connectors
that enable hardware-based mechanical admittance [12]. Tuci et al. [13] classify

cooperative transport as grasping, pushing, or caging. The DYNAMO architecture
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is most closely related to caging.

The natural admittance controller introduced by Newman [14] models compliant
behavior via mass-spring-damper systems. This foundation underlies the DYNAMO
architecture. Methods for analytically designing admittance or impedance controllers
include passivity methods, which can be leveraged for actively changing parameters

to improve stability or controller convergence [15, 16].

For surveys of non-admittance control strategies, see [17]. Leader—follower ap-
proaches are reviewed in [18, 19]. Yufka and Ozkan [11] demonstrate a multi-robot
system where the object is rigidly affixed to the robots, eliminating the need for com-
pliance. In purely theoretical work, robot—payload teams are modeled as a unified
system using Jacobians to optimize coordination [20, 21], assuming perfect knowledge

of dynamics.

The state of the art in compliance-based multi-robot transport is work by Carey
and Werfel [22] who simulate linear transport of a grasped payload using impedance
control. In contrast, DYNAMO enables transport along curved trajectories with

compliant, non-grasping end-effectors in hardware.

Admittance control has been applied in single-robot systems [23, 24], multi-arm
settings [25], and simulations [26]. This thesis demonstrates its use in an adap-
tive tuning framework for multi-robot non-prehensile mobile transport using actual

hardware.

Contributions

There are limitations and assumptions common in current MRSs capable of trans-
portation. Rigid connectors are often employed to guarantee the robot maintains

hold; however, many payloads and objects in general do not have the necessary ge-
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ometric features or attachment points. Grasping manipulators are able to attach
themselves to handles on the payload, but payloads with flat or curved surfaces, e.g.
barrels, cannot be grasped at any point. Position-based control of the end-effector
requires an extremely low margin of error and can be harmful to the manipulator or
payload if disturbances lead to high forces. Lastly, although simulation is a common
tool to develop and test robotic systems, it is not guaranteed to capture the complex
dynamics and interactions that occur in reality. Hardware validation is a necessary
step towards deploying algorithms in practical scenarios. The DYNAMO architec-
ture is inspired by the limitations and assumptions in the aforementioned discussion.

For clarity, the main contributions of this thesis are as follows.

e Custom non-prehensile end-effectors allow for the manipulation of irregular

objects or objects without grasping points.

e A novel dynamic admittance parametrization module is presented which up-

dates the parameters of admittance online in response to measured error.

e An optimal coordinated planner generates a trajectory for the mobile bases

that minimizes snap and angular momentum along the path.

e Hardware experimentation and validation on two JIANT robots suggest DY-
NAMO performs better at transportation under conditions with high pose er-

Iror.

Together, robust multi-robot transportation is enabled by dynamic admittance
parametrization and optimal coordinated planning with non-prehensile manipula-
tion. DYNAMO is shown to be successful under high pose error compared to

position-based and static admittance methods.

The paper is organized as follows. Chapter 2 discusses the creation of the JIANT

robot. Chapter 3 covers the challenges and features developed in software to operate
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the JIANT. Chapter 4 proposes the DYNAMO architecture. Chapter 5 presents

results from hardware experimentation. A conclusion is draw in Chapter 6.



Chapter 2

Hardware Development

The multi-robot transportation task requires each agent in the system to meet a min-
imum set of capabilities. For example, to implement admittance control there must
be hardware that allows for the measurement of forces on the end-effector. To this
effect, two JIANT robots were constructed to meet the hardware capabilities neces-
sary to test the DYNAMO architecture. The JIANT robot is a modified Swarmie,
fitted with commercially available and off-the-shelf components. The Swarmie is a
descendant of the iANT robots built to emulate ant foraging [27]. Approximately
100 Swarmies were produced and distributed to 20 universities to support the NASA
Swarmathon competition. Each Swarmie is designed to be assembled by students and
are built from low-cost commodity components and 3D printed parts. The JIANT
continues in the spirit of the Swarmie, being a similarly low-cost and handmade

platform.
The DYNAMO architecture asks for several requirements from each mobile ma-

nipulator. At a minimum, each JIANT needed the following hardware components:

e Compute: An on board PC capable of high-level robotics algorithm imple-
mentation, running the robot operating system version 2 (ROS2) [28], and the
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compute power for real-time high-frequency execution.

e Manipulator: A 4 degree-of-freedom manipulator to interact with the envi-

ronment.
e Plate End-Effector: A plate end-effector for non-prehensile manipulation.

e Force Sensor: A force-sensing resistor (FSR) to measure forces at the port of

interaction.

e Low-Level Compute: A small computing unit to interface with low-level

hardware, i.e. command motors and read voltage passing through the FSR.
e Vision: Color and/or depth images to support localization and mapping.

e Mounting Fixtures: Carefully designed 3D structures to hold new compo-

nents in place.

The challenges and motivations for each hardware modification from the original

Swarmie are discussed in the following subsections.

2.1 Compute

A full wireless mini PC capable of running the Ubuntu Jammy Jellyfish (22.04)
operating system is necessary to run the ROS2 Humble framework, the robotics
middleware of choice. An Intel NUC i7 mini PC was chosen for its light weight,
small form, and reasonable computing power. This computer was placed on a 3D
printed structure above the center of mass of the robot. It is powered by a 16 volt lipo
battery inside the robot chassis prior to voltage regulation. The PC connects to both

the PincherX 100 manipulator and the RealSense camera via USB 3.0 connectors.
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2.2 Manipulator

A manipulator with sufficient degrees-of-freedom at the end-effector to accommodate
uncertainty in base motion and localization is necessary for making contact with and
exerting forces on the payload during transportation. The PincherX 100 manipulator
arm supplied by Trossen Robotics was chosen for this purpose. The PincherX 100 is a
4 degree-of-freedom, 4R (revolute), serial manipulator. It is advertised to be capable
of 300mm reach, 50g payload, 5mm to 8 mm accuracy, and 5mm repeatability.
Notably, the PincherX 100 is fully integrated into the ROS2 Humble framework,

which eases the software development workload.

The manipulator itself underwent several modifications while being integrated
into the Swarmie platform. The base of the PincherX 100 was bulky and could not
be attached to the Swarmie in any reasonable configuration. At first, the base of
the PincherX 100 was removed and a custom flat plate joint was used to fix the
manipulator to the Swarmie with a 90° roll in its orientation. The custom flat plate
joint was modeled in house and printed using a 3D printer using polylactic acid
(PLA) material (see Figure 2.1b). This mounting orientation for the manipulator
was not natural and induced too much torque on the waist joint, as gravity was
no longer acting on the manipulator’s intended axis. In the second iteration, an
angle joint (see Figure 2.1a) was modeled and printed to fix the manipulator to the
Swarmie while maintaining its original upright orientation. In this orientation the
manipulator was positioned with a 90° yaw rotation with respect to the mobile base.
The manipulator’s power cable was then integrated into the Swarmie’s power bus

and communicated with the computing unit via a USB 3.0 connection.

10
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(a) Angle joint design (b) Flat joint design

Figure 2.1: Joint designs for mounting the PincherX 100 manipulator to the Swarmie
chassis. Two different approaches were modeled and 3D printed to evaluate mounting
options.

Figure 2.2: The PincherX 100 4 degree-of-freedom manipulator arm fixed to a JIANT using
the angle joint modeled in Figure 2.1a. The manipulator is mounted on the front of the
robot with a 90° yaw rotation with respect to the mobile base.

2.3 Plate End-Effector

A specialized end-effector is necessary to perform non-prehensile manipulation on

the payload. A flat plate end-effector allows for controlled pushing over a large

11
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area, as opposed to a finger-type end-effector that can only push on a precise point.
The original gripper joint on the PincherX 100 was removed and replaced with a
modeled and 3D printed flat plate end effector (see Figure 2.6). This custom part
also reduced the weight of the end-effector, effectively increasing the capable payload

of the manipulator.

2.4 Force Sensor

A force sensor capable of scalar force readings is necessary to produce force measure-
ments for both admittance-based controllers. A 1.5in square FSR 406 from Interlink
Electronics was fixed to the flat plate end-effector. A small foam pad is applied to
the surface of the FSR to evenly distribute force across the sensor (see Figure 2.6).
The positive and negative connectors were then wired into a breadboard circuit that
connected the FSR to a microcontroller in line with a 1k resistor (see Figure 2.3).

This effectively mapped the OV to 5V pin readings to real force values.

2.5 Low-Level Compute

A low-level microcontroller was needed to actuate the motors, read motor-encoder
signals, and measure voltage going through the FSR. A Teensy 4.0 microcontroller
was chosen for being easy to program, and compatible with micro-ROS software. The
Teensy 4.0 was integrated into the breadboard and connected to the other low-level

components (see Figure 2.3).

12
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Figure 2.3: A photo of the breadboard configuration. The FSR leads, motor control signals,
motor-encoder output signals, and Teensy 4.0 are all wired together.

2.6 Vision

A camera system is necessary for robot localization. An initial modification involved
mounting a RealSense D455f to a carbon fiber mast that was fixed to the rear of
the robot (see Figure 2.4). The sensor was situated such that it captured a wide
field of view in front of the robot, specifically a horizontal field of view of 87° and
vertical field of view of 58°. The RealSense D455f camera provides color images
and depth images via stereo vision technology, utilizing dual infrared cameras and
an infrared projector to calculate depth through stereo triangulation. The camera
captures color images and depth images at a resolution of 1280 x 720 pixels and at a
frame rate of 30 fps. The effective depth sensing range is 0.2m to 6 m, making it a
reliable choice for robot localization and environmental mapping. The camera also
includes a built-in inertial measurement unit (IMU) with a 6-axis accelerometer and

gyroscope, enabling visual-inertial odometry for improved localization accuracy.

13



Chapter 2. Hardware Development

\ RealSense

D455f

Figure 2.4: JIANT robot equipped with a RealSense D455f depth camera for environmen-
tal perception, providing synchronized color and depth data to enable obstacle detection,
navigation, and 3D mapping.

However, the compute power needed to perform high-accuracy and high-frequency
localization and mapping using depth images provided by the RealSense D455f was
greater than the Intel NUC i7 could provide. As an alternative, a Vicon motion
capture system was adopted to provide precise localization for the robots (see Fig-
ure 2.5). The Vicon system used sixteen Valkerie camera sensors positioned around
a4m x 4m workspace. The Vicon tracking system was configured to produce track-
ing data at a rate of 100 Hz. Vicon systems utilize passive retro-reflective markers,
sometimes referred to as mocap markers, attached to both the robots and payload

object. Mocap markers are then illuminated by infrared LEDs integrated into each

14
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camera unit. Although the adopted Vicon system boasted sixteen Valkerie camera
units, they were setup such that at any given moment approximately four cameras
maintained line-of-sight to track each marked object. With even just four effective
cameras, tracking estimation is still very accurate. The Vicon tracker software specif-
ically provided six degree-of-freedom pose estimation (position and orientation) with
sub-millimeter positional accuracy, significantly exceeding the precision and update
rate achievable through the RealSense D455f camera paired with the Intel NUC i7
compute. This external localization approach freed up computational resources and
also brought an opportunity for low error position tracking with the mobile bases.
The RealSense camera and mast were removed in the final version of the robot seen

in Figure 2.6.

2.7 Mounting Fixtures

Several mounting fixtures are necessary to securely hold all of the components in place
during operation. The addition of the PincherX 100 manipulator arm motivated the
creation of an angle joint depicted in Figure 2.1a used to attach the manipulator
to the Swarmie. The high-level computing unit and low-level computing unit (Intel
NUC and Teensy 4.0) are housed by a blue 3D printed scaffolding seen in Figure 2.6.
Finally, to position the RealSense camera such that it has a clear forward view, a
carbon fiber mast is attached to the base of the Swarmie for the camera to rest on top
of (see Figure 2.4). These modifications were made to accommodate the hardware

that was being tested at the moment.

15
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Valkerie
Camera

Figure 2.5: A photo of the adopted Vicon camera system workspace and two JIANT robots.
In the scaffolding are four Valkerie cameras. The Vicon system comprised of sixteen of these
cameras. The pose estimation produced by the Vicon tracking software is transmitted over
the same ROS2 network that connects the JIANT robots.

2.8 Final Robot Platform

The final robot platform is diagrammed in Figure 2.6. Two identical JIANT robots
were built to develop and test the DYNAMO architecture.

16
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Vocap Marers ; PincherX 100
Manipulator
Intel NUC i7 , .

Plate
End-effector

——

Teensy 4.0 |

Force-Sensing
Resistor

Figure 2.6: JIANT robots are modified Swarmie robots made from off-the-shelf and 3D
printed components. Both Monica and Ross have identical hardware components and
wiring.

17
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Software Development

Similar to the hardware design process, a software suite built primarily with the
ROS2 Humble framework was implemented to meet the required software specifica-
tions and capabilities for the DYNAMO architecture. In addition to needing to com-
municate with various hardware components, it is crucial that the admittance and
base tracking algorithms run at a high frequency. The following software capabilities

were implemented on an Intel NUC i7 computer and Teensy 4.0 micro-controller:

e Robotic Middleware: Inter-process communication, message passing, and
modular software architecture. ROS2 Humble provides the foundational frame-

work for streamlined algorithm development.

e End-Effector Actuation: Real-time control and actuation of the robotic

end-effector.

e Force Estimation: Calibration that maps sensor analog output to accurate

force readings.

e Localization and Mapping: Global pose estimation and environmental map-

ping capabilities for autonomous localization and mapping.

18
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e Network Communication: High-frequency, low-latency inter-device com-

munication across the ROS2 network infrastructure.

The full implementation process for each software capability is discussed in the fol-

lowing subsections.

3.1 Robotic Middleware

A fundamental challenge of robotics is the coordination of diverse components such
as sensors, actuators, and algorithms. Choosing a framework to facilitate that co-
ordination is a critical first step. The most common approach, which is the one
that was chosen, is to use ROS2, specifically the Humble distribution. ROS2 is
an open-source, community-developed robotics middleware framework maintained
by the Open Source Robotics Foundation (OSRF) that is designed to simplify and
modulate the robot design process. ROS2 Humble, the most recent distribution at
the time of development, was chosen for its vast array of modern developer tools,
modular structure, and built-in communication infrastructure that supports multiple

devices on a single network.

The most consistent hurdle throughout the development process was that most
ROS2 tools and libraries were designed for single-robot systems. For example, the
transform (TF) tree, a common interface for tracking and manipulating coordinate
frames, expects the data to be published to the default TF topic. In a system with
multiple robots, all topics are now name-spaced with the robot’s name, which dis-
rupts the default topic nomenclature. The only solution in this case and in many
other cases was to carefully reroute topics or edit the source code to allow name-
spaced topics. This kind of issue was frequent and recurring throughout the devel-

opment of the DYNAMO architecture across many kinds of ROS2 developer tools,
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PincherX 100 interfaces, RealSense interfaces, and other open-source robotics pack-

ages.

Another facet of ROS2 development is to create a complete description, or model,
of the robot often referred to as the robot description. A robot description is typically
a compilation of unified robot description format (URDF) and XML macro (XACRO)
files. The robot description for the JIANT is shown in Figure 3.1. Since the JIANT
robot is custom in-house constructed robot, the robot description was manually

created using measurements from the actual robot.

N

Figure 3.1: A visualization of the robot description for a JIANT. This model is used in
many core packages of ROS2.
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3.2 End-Effector Actuation

Control of the end-effector is enabled by solving the inverse kinematics (IK) prob-
lem. IK solutions typically come in numerical or analytical forms. An analytical
solution involves solving for the exact solution through closed-form equations based
on the robot’s geometric structure, however, this formulation can be complex and
yield multiple solutions for redundant manipulators. A numerical solution iteratively
converges towards a solution until the end effector pose is within a certain tolerance.
For real-time, complex manipulators, as is this case, a numerical IK solver is typically
chosen. The Movelt2 framework and the Interbotix API were tested for end-effector

actuation.

Movelt 2 is a ROS2-based framework for robotic manipulation and motion plan-
ning. It provides high-level functionality that ties together kinematics, collision
checking, motion planning, and control profiles. Movelt2 features several differ-
ent libraries for motion planning. Two libraries were tested within this framework.
These were called the Open Motion Planning Library (OMPL) and the Pilz Industrial
Motion Planner (PILZ).

OMPL provides a collection of sampling-based motion planning algorithms in-
cluding Rapidly-exploring Random Tree (RRT), Rapidly-exploring Random Tree
Connect (RRTConnect), and Kinematic Planning by Interior-Exterior Cell Explo-
ration (KPIECE). These algorithms are well suited for high dimensional configuration
spaces. Several tests were performed with this library and it was found to be highly
unsuitable for DYNAMO. PILZ is another motion planner available in Movelt 2.
It was originally developed for industrial robots, and provides deterministic, Carte-
sian and joint-space planners designed for predictable, safe, and certifiable paths.
The trajectories generated from these motion planners were more reasonable than

the ones from OMPL. Table 3.1 provides a summary on the speed of the discussed
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planners.

Table 3.1: Comparison of Movelt 2 path planners.

Path Planner Avg. Planning Time (s)
RRT 0.36
RRTConnect 0.32
SBL 0.15
EST 0.14
BKPiece 0.12
LBKPiece 0.25
PILZ LIN Path Planner 0.05

The next library utilized was the Interbotix API, a software interface developed
by the manufacturer of the PincherX 100 manipulator. This API provided a high
level abstraction layer over the servo motors. It consisted of functions written in
Python that would take a goal pose, then use a numerical IK solver to find the
corresponding joints angles. This library provided greater freedom and control over
the arm and allowed for the development of a custom position controller to generate

trajectories.

An initial implementation of custom position control of the end-effector using the
Interbotix API involved an iterative update strategy. This position controller acted
as a layer on top of the IK solver, continuously reading in goal poses and adjusting the
position of the arm in small increments. At each iteration, the controller compared
the arm’s current pose with the given target pose. If the error was above a threshold,
an intermediate target pose was generated that nudged the arm toward the target.
This intermediate target pose was then passed to the IK solver, which generated a
new set of joint angles. The servo motor drivers would receive these joint angles,
and autonomously move the motors into these positions. This process repeated

continuously.

This iterative position control method allowed for continuous corrections, but
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introduced instability when combined with the admittance controller. Furthermore,
the arm velocity was very slow for small displacements under the servo’s default
velocity profiles. The position controller was redesigned and the velocity profile of
the servo motors were changed to "step” to address these issues. All velocity profiles

are shown in Figure 3.2. The "step” velocity profile allowed the servo motors to

achieve their commanded position as quickly as possible, regardless of the distance.
Step Rectangle Trapezoidal

U N
1l R — RPN

Figure 3.2: The PincherX 100 manipulator arm actuates its servos using one of three
possible velocity profiles: step, rectangle, or trapezoidal [29]. The default is trapezoidal.

[l |
o

The manufacturer’s default configuration was a time-based trapezoidal profile,
diagrammed in Figure 3.2, which constrained the motion to gradual accelerations
proportional to the distance to the target [29]. This conservative approach ensured
smooth motion but resulted in slow response times, particularly for small move-
ments. The velocity profile was disabled, meaning the velocity of the servo motors
would resemble a step function. In this modified scheme, the actuators moved at the
maximum feasible velocity until the target position was reached. This adjustment
significantly improved responsiveness while maintaining sufficient stability to operate

in conjunction with the admittance controller.

The final design of the admittance controller removed the iterative position con-
trol approach and opted to go straight to the target pose. On each iteration of
the control loop, if the error is above a threshold, the arm moves to that position
directly instead of to an intermediate target position. This was done to avoid the

destabilizing and jerky effects seen in the iterative method.
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3.3 Force Estimation

An essential component to the DYNAMO architecture is the force estimation pro-
vided by the FSR. A 1.5in square FSR 406 from Interlink Electronics uses a simple
conversion between force and voltage. The voltage divider is described as:

Ry V+

Vour = 75—
! (Rar + Rrsr)

(3.1)

where R, represents the measuring resistor, and the value of R, affects the sen-
sitivity range of the FSR. R,, was tested using 22k(2, 47k, 100k2, 220kS2, and
470 k2 resistors. For each resistor, 10 samples were taken using 5g, 10g, 25¢g, 50¢g
,100g, 200g, and 500 g weights. For each dataset collected, a log curve was fitted
and graphed in Figure 3.3.

Logarithmic Fit to Data for Resistors

Resistor 22 k Ohms
Resistor 47 k Ohms
Resistor 100 k Ohms
Resistor 220 k Ohms
Resistor 470 k Ohms
Fitted Log Curve for 22
Fitted Log Curve for 47
Fitted Log Curve for 100
Fitted Log Curve for 220
Fitted Log Curve for 470

T T T T T T
0 100 200 300 400 500
Grams

Figure 3.3: The output of the FSR was sampled several times using different weights for a
set of resistors.
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Table 3.2: Third-degree polynomial coefficients for force sensor calibration.

Coeflicient Value

as 0.035582
az -0.055113
ap 0.38334
ag -0.057718

The final curve used and implemented on the Teensy 4.0 was a third-degree

polynomial of the form:
F = a32® + asx® + ayx + ag (3.2)

where F' represents the calibrated force output, = is the raw analog sensor reading,
and ag, ay, ..., as are the polynomial coefficients listed in Table 3.2. This fitted curve

has an R value of

3.4 Localization and Mapping

As a prerequisite to reliable navigation, the robot must first localize itself by de-
termining its pose within the environment. Robot localization comprises of two
approaches: local estimation, in which the robot estimates its current pose relative
to its previous known pose, and global localization, in which the robot determines
its pose relative to the global environment, typically through a global mapping algo-
rithm. Local estimation often feeds into a global estimation algorithm for increased
reliability. This section outlines challenges faced when obtaining reliable odometry,
as well as development experiences with the Simultaneous Localization and Mapping

(SLAM) Toolbox and Real-Time Appearance-Based Mapping (RTAB-Map) [30, 31].

To first establish a strong local pose estimation method, an extended Kalman fil-
ter (EKF) [32] comprised of IMU data and wheel odometry data was developed. IMU

data originated from the RealSense camera, while wheel odometry was calculated on

25



Chapter 3. Software Development

the Teensy 4.0 microcontroller using forward kinematics (FK) on the output from
the motor encoders with the robot description. Together in an EKF, local estimation
was found to be decent but far too much error accumulated after driving more than
about 1.5m for the admittance-based methods to compensate (see Figure 3.4). This

motivated the implementation of a global pose estimation algorithm.

Figure 3.4: The result of both JIANTSs after being commanded to drive straight 4m. The
robots are actuated using a proportional-integral-derivative (PID) controller that corrects
for error in actual position returned by the EKF. In this case, although error is corrected
for, the EKF does not have a reliable notion of where the robots are in the environment.
This motivated the need for a global localization algorithm.

Our initial approach was to use the SLAM Toolbox together with ROS 2 Navi-
gation Stack (Nav2) to both map and navigate the robot’s environment. While the
maps generated by the SLAM Toolbox were acceptable, the localization quality was
very poor. Hoping to achieve more accurate pose estimates, RTAB-Map was tested,
only to discover that the root cause of poor estimation quality lay in the quality
of the onboard sensors and insufficient compute to run these algorithms at a high

resolution.

RTAB-Map, another SLAM package available in ROS2, was relatively easy to
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configure but ultimately did not produce more reliable pose estimates. In many
cases, it struggled to generate a consistent, usable map of the environment, often
producing warped or incomplete reconstructions. After experimenting with several
configurations, it became clear that the robot’s sensors produced too much noise to

be trustworthy.

The biggest problem came from the wheel encoders and the IMU sensor on the
RealSense camera. Granted that the robot is skid-steer, the wheels frequently slipped
on the ground, causing the robot to move in ways impossible for the encoders to
capture. The IMU sensor added further complications, with excessive noise and
inaccuracies of up to 15 degrees. Some configurations even caused systematic drift,
where RTAB-Map believed the robot was constantly turning despite being stationary.
It is important to recognize that SLAM and RTAB-Map are impressive algorithms
but also require lots of compute and tuning to perform optimally. The challenge of

optimally tuning a global pose estimator was outside of the research scope.

3.5 Navigation

The method of navigation is a core component of the cooperative transportation
process. Although an admittance-based controller is able to adapt to changes in
relative distance between the robots, they are limited by the reach and dynamics of
the manipulator. A well designed navigator will produce a trajectory that not only
minimizes the error in the distance between the robots but also minimizes higher

order terms such as snap and angular momentum.

An initial approach for developing a trajectory planner was inspired by Yukfa et
al. [11]. In this work, a group of nonholonomic agents (designated ”followers”) and
the payload (designated the ”virtual leader”) fall into a formation. The virtual leader

charts a path to the goal that minimizes sharp turns so that the nonholonomic bases
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can track the correct motion. This work served as a good example of multi-agent
navigation, and introduced the nuances of multi-robot path planning. Ultimately,

the decision was made to implement a custom navigation algorithm.

The next attempt at a more sophisticated navigation strategy was to use cubic
splines to form a trajectory, and proportional-integral-derivative (PID) controllers to
get the robots to follow this trajectory. First define two points, a starting point and a
final point. Then, intermediate points are added to form a non-linear path. After the
path is formed, the robots would start to follow their own trajectories independently.
Each robot used three PID controllers to stay on track. One PID controller simply
controlled the x-position of the robot. The other two worked together to control
the heading of the robot while also minimizing its lateral error. This cascaded PID
architecture is described in depth in Section 4.2.1. This strategy was simple, but
had two limitations. First, the cubic splines introduced jerk at the beginning of the
path, which caused the robots to immediately drop the payload. Second, there was
no reliable way to get the robots to form and follow the same path. Usually, the path
one robot would follow would be a slightly shifted from the path of the other robot.
Furthermore, there were no guarantees in relative position or coordination between

the mobile bases since each spline was generated independently.

The last path planning strategy implemented, and the one ultimately used in the
final product, is a sequential convex quadratic program (SCQP) optimal coordinated
trajectory planner. This planner minimizes snap and change of angular momentum
along a coordinated payload path for two nonholonomic robots. This algorithm is

described in full detail in Section 4.2.
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3.6 Network Communication

Throughout the duration of the project, ROS2 communication was facilitated via Wi-
Fi using a consumer-grade router as the central access point. While this configuration
initially proved sufficient bandwidth, the network infrastructure began exhibiting
significant performance degradation as the software stack grew in complexity and

computational demand.

The first major bottleneck was observed while testing the admittance controller on
both robots. Specifically, starting the software stack on a second robot consistently
resulted in a collapse of network throughput, effectively halting all inter-process com-
munication. To mitigate this issue, the underlying ROS2 middleware was changed
from FastDDS to CycloneDDS. This immediately yielded a noticeable improvement
in discovery speed and message throughput. However, this modification served only
as a temporary solution. Once SLAM and Nav2 were integrated into the software
stack, the same network communication failures resurfaced. A more robust solution
was achieved by giving a ROS2 domain ID to each robot to isolate their network

traffic, effectively creating isolated communication channels for each robot.

After transitioning to a Vicon system, communication failures once again became
a recurring problem. When both robots were initialized, the network exhibited the
same collapse as before, halting data exchange and compromising experimental in-
tegrity. To address this, the quality of service settings across all topics were modified
to best effort reliability and volatile durability. This prevented communication from
halting. However, this came at the cost of message reliability. Many critical mes-
sages were either dropped or never received. Reducing the publishing frequency of
high-bandwidth topics further improved stability but failed to eliminate packet loss
entirely, leaving the system only partially functional. This issue continually persisted

into the final research product and remains a problem.
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Methods

The proposed DYNAMO architecture is implemented by deriving the relevant control
theory, developing supporting software, and constructing a robotic system capable
of executing the controller and planning a path for the mobile base. This thesis
describes the construction of JIANTSs and the experimental design used to evaluate
DYNAMO'’s performance in physical trials. Throughout the paper, all numerical
values, including robot specifications and experimental results, are reported to two
significant figures unless otherwise noted. The robots that are experimented with
are named Monica and Ross in reference to a TV show in which a group of friends

struggle to cooperatively carry a couch.

4.1 Control Methods

4.1.1 Static Admittance Control

An admittance controller is defined by the relationship between force and motion

at the “port of interaction” [33]. The port of interaction is the point at which the

30



Chapter 4. Methods

manipulator interacts with the environment. By modeling the compliant mechanical
behavior of a mass-spring-damper system, forces at the end-effector are translated
into smooth motion trajectories. This can prevent the external forces from either
damaging the manipulator’s hardware or the payload itself. The general formula for
admittance control in one-dimensional free space is given in Equation (4.1) where
Fy is the external force, M is the mass, B is the damping, K is the stiffness, and x

is the relative distance from the virtual position.

Fow = M2+ Bz + Kz (4.1)

A frame of reference is introduced by defining a virtual set point x, as shown in
Equation (4.2) where x is the relative distance from z,. The virtual set point defines
the position of the end-effector when F,; = 0. By setting x, to a position that is

inside of the payload, a controlled force, F,., can be exerted.

Fow = Mi+ Bt + K(z, — ) (4.2)

Initial velocity and acceleration of the system are set to zero, i.e. © = 0 and
Z = 0. A step size of At = 0.002 is set to reflect the desired 500 Hz update rate.
Then Euler’s method is used to compute the position (x, — x;) generated by the

admittance controller in Equation (4.5) [23].

1

Ty = M(Fext — Bty — K(z, — ) (4.3)
Ty = @1 + AL (4.4)
Tt = Ti—1 + ﬂftAt (45)

Admittance is implemented on each of the the JJANT robots, modeling each as a
mass-spring-damper system on either side of the payload as seen in Figure 4.1a. In
practice, this architecture allows each manipulator to support the the payload and

cooperatively regulate forces at their respective end-effector.
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The parameters for the static admittance controller (Table 4.1) were initially
chosen using the critical damping heuristic. Specifically, the damping was set above
the critical value By = 2V MK to ensure a stable, fast, non-oscillatory response.
These values were then hand tuned over several weeks to maintain consistent contact
between each manipulator and the payload prior to driving. Values were also tuned
such that the forces on the end effector mapped to positions within the manipulators

range of motion.

4.1.2 Dynamic Parameterization of Admittance-Based Con-

trol

An admittance controller such as the one implemented in Section 4.1.1 is parameter-
ized (i.e. tuned) for a specific range of forces at the port of interaction and assuming
a fixed distance. However, during transport the distance, d, between mobile ma-
nipulators varies continuously. An admittance controller tuned for the initial state
before movement begins may not work well once transportation is underway. The
parameters set for the static controller (Table 4.1) are used as initial values for the

dynamic version.

Table 4.1: Dynamic admittance controller parameters. Default values were empirically
determined under the constraint that they satisfy the critical-damping heuristic. These
default values were used for the static admittance controller and as initial values for the
dynamic admittance parametrization.

Symbol Meaning Value Units
Ty Default virtual position  0.25 m
K Default stiffness 60 N/m
B Default damping 70 N-s/m
M Default mass 5 kg
o Gain for z, update 0.5 dimensionless
aK Gain for K update 30 dimensionless

A dynamically parameterized admittance controller that updates K and z, during
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Figure 4.1: Mechanical diagrams of the system: (a) Lateral view of the transportation
setup. (b) View from above of the payload, mobile base, and manipulator poses for each
robot labeled pp1, PM, PR, PMm respectively. The adjusted heading angles 6y and g are
calculated using the aforementioned poses in Section 4.1.3 to ensure the manipulator poses
are always collinear along the x-axis.

33



Chapter 4. Methods

transportation based on the distance between the two robots is proposed. These
parameters are updated via the estimation algorithm shown in Figure 4.2 (yellow).

The update rule for the virtual set pose, x!, and the stiffness, K’ is defined as

follows:
T =1, + age (4.6)
K' =K — ake (4.7)
where e = |p,, — pr| is the magnitude of the error in relative position between

Monica and Ross, z, is the default parameter for virtual position, K is the default
parameter for stiffness, «, is the scaling factor for virtual pose, and aj is the scaling
factor for stiffness. After modifying Equation (4.2) to use the adaptive versions z)
and K’, the dynamic admittance controller in Equation (4.8) is produced.

Feow = Mi + Bi + K'(z, — x)

(4.8)

Foxt = Mi+ Bi+ (K — ake)((x, + aze) — x)
Using Euler’s method as described in Equation (4.5), together with the formula for
dynamic admittance from Equation (4.8), and solving for the displacement (x; — z,)

yields Equation (4.9),

Ty — 2 = ((y + age) — zy1) + At(d_4
(4.9)

+ At (%(Fm _ Bi— (K — ozKe)xt_l))) |

The update rules defined in Equations (4.6) and (4.7) seek to ensure safety, sta-
bility and robustness at the port of interaction. The gain «, ensures kinematic
consistency by formulating a virtual pose that tracks payload-relative motion. The
gain ag ensures force regulation as a function of inter-robot spacing by updating
effective stiffness. When the mobile bases converge, the manipulators are at risk of
mechanical interference. To discourage this motion, stiffness is increased to prevent

collision. Conversely, when the mobile bases diverge, the payload is at increased risk
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of being dropped, and the manipulators extend according to Equation (4.6). In this
lengthened configuration, manipulability at the end-effector is decreased, and motion
requires greater torque on the joints. Lowering effective stiffness reduces transmitted
force on the payload while mitigating the risk of exceeding manipulator joint torque

limits.
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Figure 4.2: A block diagram for a single agent. The parameter estimation algorithm,
highlighted in yellow, takes as input the displacement in the relative position of both
JiANTSs while the mobile base executes the desired trajectory from the optimal coordinated
planner. The only external signals received by each robot are the actual robots poses,
[,y,0], and command velocities.

4.1.3 Manipulator Heading

The dynamic admittance controller adjusts the target position x along a single axis

given Fg, a scalar force measurement. The single-axis constraint requires end-
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effector poses to remain collinear within the 2D special Euclidean group (SE(2)),
meaning their positions and orientations (x,y, ) must be aligned along a shared
axis. To guarantee this behavior the necessary heading angle adjustment 6y; and
fr are calculated, diagrammed in Figure 4.1b. Let py and pr be the mobile base
poses with respect to the world frame, W, for Monica and Ross. Let pa, and pr,
be the pose of the manipulator base link for each robot. The transformations Ty
and Ty g, from W to pm and W to pr respectively, are dynamically retrieved via

and T

pr.pr, Lrom the

the Vicon camera system. The static transformations 75, py,

mobile base to the manipulator base link are fixed measured transformations.

Frame composition is used to calculate T; the transformation from one

PM,, PRy,

robot manipulator to the other, and wice versa as described in Equations (4.10)

and (4.11).

Tpr’pr = TP_I\}I,pr TI;/,lM TW,R TPR,pr (410)

Tprvab = TI>_R17pr TVT/,lR TW,M TpM,pr (4.11)

The desired rotation for each manipulator arm is determined via atan2(y, z), where

y and x are planar components of the translation vector p = [z v 2|" in the ho-
mogeneous transformation. Specifically, the last column of Ton, oy, for Monica and
Tor. pa,. for Ross is extracted from the transformation.

b’ b

In practice, this alignment is maintained by coordination over a network between
the JIANTSs using the Vicon for accurate localization. Although the JIANTSs align
their manipulator arms using globally localised pose information, the core coopera-
tive control strategy, dynamic admittance control, is decentralised and relies solely
on local force sensing. This distinction is important: communication is used for pose
alignment and mobile base localisation, not for synchronising or planning manipu-
lation forces. The reactive behaviour of each robot is governed independently by

sensed interaction forces at the end effector.
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4.1.4 Position Controlled Transportation

A static position controller for the end-effector acts as a baseline for measuring the
value of admittance control. In this control scheme, the end-effector maintains a fixed
relative position located slightly inside the payload. For successful transportation,

the JIANTSs must maintain a fixed separation distance.

4.2 Optimal Coordinated Planning

Successful mobile manipulation requires coordinated path planning for both agents.
To do this, cooperative transport is parameterized by considering the pose and dy-
namics of the payload ppi(t) = [z(t),y(t),¢]" € R3, following Slightam et al. [34].

The unit vectors defining the payload pose are

o) = | aw = |7 =t ra (112)
sin ¢ cos ¢

where r is the payload pose offset, v is the unit tangent/forward direction of the
payload (body x-axis) and n is the unit normal/left direction (body y-axis) of the
payload. A subset of pp, to denote the x,y, positions is ¢ = [z(¢), y(¢)]”. This can

be used to define the base positions and velocities of the robots,

b1 =C— T\A/', bg =cCc-+ T\A/, (413)

bi=¢—rén, by=c+ron. (4.14)

To determine the skid-steer platform headings (assuming no lateral slip), first define

0; = atan2((b;),, (b).), (4.15)
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where 6; are the base headings for Monica and Ross. With the geometry defined,
the optimization problem can be setup to co—optimize 4 different components of
the multi-agent motion. (1) minimum snap of the centerline: penalize ||c™® 2. (2)
minimum change of angular momentum: for a planar rigid body, L, = L¢ =
L, = I.¢; penalize L? = I?¢*. (3) Soft yaw tangent alignment: discourage large
misalignment between box yaw ¢ and the tangent heading i) = atan2(y, #). Finally,
(4) Tracking/boundary terms: keep the center-line close to a desired S-path between

the start location and desired goal location and enforce boundary conditions.

The minimization function, J, is initially written for a strictly convex quadratic
program (QP) as:
1 — ref ||2 ref ||2
Jin J= Werack ([|X = X5 4+ Y — Y™|3)
+ Wonap ([ DaX I3 + | D2 Y [13) (4.16)

+ wj | D2®||3 + wj || Ds® |3

D; are co-state variables and the yaw—tangent coupling is left out initially. The
Hessian is symmetric positive definite (SPD), so Equation (4.16) solves in O(N)
with a band solver. The term, wgpap, limits center-line jerkiness; w; penalizes torque

effort (since 7, = L, = Izé); w; limits torque rate.

The constraints for the yaw to follow the tangent heading are ¢ = atan2(y, ),
but 7 is nonconvex in (X,Y). A quadratic alignment term is added and linearized

about the previous iterate.

To achieve coupling in sequence, the linearization of the heading map is required,
by letting Ik = (D1X)k, ykz = (DlY)k, 8% = l‘z + y]%, I/Jk = atan2(yk,5ck). Its first

variation is

L Uk «. Tp ..
5'¢k = ark(sl’k -+ ayk 5yk = ( s%>5$k -+ (S%)éyk
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Since & = D1 0X, dy = D1 0Y, the linearized alignment residual at iterate j is

rU) — (® — (I)(j)> + (q)(j) _ \Il(j))

N J N J

yaw in?:;ement conggant
| | | | (4.17)
_ ngj)Dl(X _ X(J)) + Py(])D1<Y _ Y(J))’

tangent increment

with diagonal gains Py = diag( — y,ﬁj)/sfjﬁ), Py(j) = diag(x’,gj)/séj)Q), and WU =
[ ,(f )]. Then wign||7V||2 is added to the cost. This produces only quadratic (and
banded) cross terms between X, Y, ®.

Equation (4.18) extends the cost function defined in Equation (4.16) by adding
an alignment term. At each iteration j, solve the convex QP,

min J(X, Y, )+ w1 (X, Y, @) (4.18)

subject to boundary equalities (position, and zero end-velocities/yaw-rates) and
payload bounds. Following this, (XU+D YU+D eU+D) « (X,Y,®) is set and

repeated until convergence occurs (small change of J or of the variables).

Once (X,Y,®) are found, iteratively determine the terms in Equations (4.12)
to (4.15), described via Algorithm 1 using a SCQP.

4.2.1 Algorithmic Control Architecture

Desired positions, by, ba, and associated headings, 0,024, at step k for each
mobile base determined by Algorithm 1 are recovered via Equations (4.13) and (4.15).
Simultaneously, the measured positions lA)Lk, BM, élﬁk, and é2,k are retrieved from
the Vicon system. Typical of skid-steer mobile platforms, a PID controller maps
longitudinal error to linear command velocities, and a cascaded PD-PID controller
maps lateral and heading error to angular command velocities as diagrammed in

Figure 4.2.
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Algorithm 1 SCQP for snap+L co—optimization
1: Build S-path samples X" Y™ & initial ®©

2: Initialize X =Xref YO =yref,
3: for =0,1,2,... do
4: Compute @) = DX, y(j) = DY, s = /302 + g2, i) —
atan2(y\), 20)).
5. Form PY) = diag(—5@/s"2), PY) = diag(i#@ /s1)2),
6: Solve the convex QP 4.18 with boundary equalities (banded SPD).
7. Update XU+ YU+) U+ X Y, ®.
8: if JU) — JUHD < ¢ and ||(XU+D, YUHD UH)) — (XU YO @W)|| < ¢
then break
9: end if
10: end for

11: Recover b1,2,51,2,9172 via Equations (4.13) to (4.15).

The desired and actual positions are decomposed b;; = [:ciyk,yi’k]T and then
transformed into their respective mobile base frame using the transformations Ty
and Tyyr. For longitudinal correction, the error between the desired and actual x po-
sition in the mobile base frame €ix = Tik— Tik I8 passed into a PID controller which
produces Z¢ng, & linear command velocity. For lateral and heading correction, a cas-
caded controller combines these errors into a single angular command velocity about
the z-axis. Lateral error in the mobile base frame, ezk = Yik — Uik, 1s passed through
a PD controller which produces a 04, correction. Then error ef’ = 0ar+0ir— ézk is
passed through a PID controller which produces Oema, anl angular command velocity

about the z-axis.
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4.3 Experimental Methods

4.3.1 Hardware Implementation

The JIANT (Figure 2.6) robots used to conduct experiments are modified Swarmies
themselves descended from 1ANT robots built to emulate ant foraging [27]. Approx-
imately 100 Swarmies were produced and distributed to 20 universities. Swarmies
are designed to be assembled by students and are built from low-cost commodity
components and 3D printed parts. JiIANTSs continue in that spirit with the whole
arm and sensor assembly costing under US$1000. Each robot uses a Pololu brushed
DC motor to move the wheels. These motors are controlled using a Teensy 4.0 pro-
grammed using Arduino and micro-ROS [35]. An Intel NUC mounted on the JIANT
runs ROS2 nodes. Swarmies are skid-steer robots. The JIANT base is 24 cm long

and 33 cm wide.

An Interbotix PincherX-100, a 4DOF robotic arm with a reach of 30 cm, and
accuracy of 8 mm was attached to the base. The arm is constructed from lightweight
aluminum and actuated by Dynamixel servos. The arm is rated for payloads up to
50¢g. The arm has a 30 cm maximum extension. This assembly was selected for its

low cost and compatibility with ROS2.

The pincher was replaced with a 3D printed flat-plate end-effector equipped with
a FSR. The FSR selected is a low-cost, consumer-grade product 38 x38 mm from In-
terlink Electronics. This polymer-film sensor is 0.5 mm thick and lightweight (1.2 g),
allowing integration into the end effector with minimal additional mass. The stock
FSR can detect loads from approximately 50 g to approximately 10kg. To improve
sensitivity in the low-force range, the FSR was paired with a fixed 1k{) resistor
in a voltage divider configuration. This FSR measures external force, F, in the

admittance equations in Section 4.1.1.
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The payload is a small untreated cardboard box of mass 86.64g (Figure 2.6).
A thin foam pad covers the end-effector pressure sensor to distribute force and im-
prove readings. The dynamics of cardboard—foam friction is complex. Preliminary
experimentation showed even slight pressure deviations caused the box to fall despite

contact friction.

4.3.2 Experimental Setup

Three different control strategies: admittance control (Section 4.1.1), dynamic pa-
rameterization (Section 4.1.2), and position control (Section 4.1.4) were tested under
the same conditions to measure their effectiveness. All three strategies used the base
navigation described in Section 4.2. Each strategy was evaluated using a set of 20 tri-
als, where the only difference was the manipulator control strategy. In each trial, the

robots were commanded to transport the payload along a path to a goal destination.

A Vicon tracking system was used to track the pose of each robot and the payload.
Each robot’s base and the payload had 4 markers attached. 4 Vicon cameras were
able to effectively capture a 3x3m area. Since the robots start off about 1 m apart
that limited the maximum path distance to 2.2m or approximately 9 robot base

lengths.

To evaluate how well the payload could be transported under linear and curved
movement, a goal location was chosen that resulted in the planner generating an S-
shaped path as shown in Figure 4.3. The goal position was chosen to be to the right
of the start location for half the trials and to the left for half the trials. This mirroring
introduced variety in trajectory direction while keeping the overall movement pattern

comparable across trials.

Experiments were conducted until 20 valid trials had been collected per strat-

egy. Results are presented as distance traveled (Figure 5.1a) and success rate (Fig-
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ure 5.1b). Trials affected by hardware and software issues (e.g. failed servos and
ROS2 initialization problems) unrelated to the strategy being tested were excluded.
These failures constituted less than 10% of total trials. For each trial, a payload was
placed between the robots so the manipulators made contact. The trajectory plan-
ner was launched and the JIANTSs navigated to the goal. Each trial is classified as a
success if the payload is transported without being dropped for the entire distance
of the planned path. If the payload is dropped, the integrated path distance covered
before failure is recorded. The point at which the payload drops is recorded on videos
of each trial and by observing forces applied to the end effectors. Successful trials
are classified as “perfect” or “faulty”. Faulty trials indicate that the payload shifted

or twisted visibly during transport indicating an insecure hold on the payload.

43



Chapter 4. Methods

I Monica I Ross I Payload

o

IS
e
w

0.2 0.7 12 1.7 22

Force (N)
o = N W

08,3 0.2 0.7 12 1.7 22
g 3
s 2 MARRRRSYI A
5 1
"0
~0.3 0.2 0.7 12 1.7 22

X (m)

Figure 4.3: Motion along the desired trajectory and accompanying forces on the end-
effector for dynamic admittance parameterization along a left s-curve and a right s-curve.
The trajectory plots show the desired position (dashed line), mean position (solid line), and
standard deviation (shaded area). The force plots, aligned with trajectory along the x-axis,
show the mean force, p, (solid line) and standard deviation, o (shaded area). Despite error
tracking the desired trajectory, forces are maintained throughout transportation.
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Results

Figure 4.3 shows the trajectory and interaction forces recorded during payload trans-
port under the dynamic admittance controller. Although the applied forces exhibit
some fluctuation, they appear stable, never exceeding the mechanical limits of the
manipulators, based on qualitative experimental interactions. Notably, the robots
consistently apply moderate, well-regulated contact forces that keep the payload se-
cure throughout the motion. This suggests that the dynamic admittance controller
actively modulates compliance to accommodate unmodeled dynamics and mobile

base errors.

The effectiveness of this control strategy is evident in Figure 5.1. Figure 5.1a
shows the distance traveled before the payload was dropped using each strategy.
The dynamic admittance controller consistently reached the full 2.2 m extent of the
trajectory, limited only by the Vicon workspace. By contrast, the position and static
admittance controllers failed to reach even half that distance on average. This may

be due to high tracking errors seen in Figure 4.3.

Across n = 20 experiments for each method, the position controller had a mean

transport distance of 0.134m (95% CI [0.112m, 0.157m)]), the static admittance
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controller 0.955m (95% CI [0.515m, 1.396m]|), and the dynamic admittance pa-
rameterization controller 2.185m (limited by the arena size). Dynamic admittance
achieved a significantly greater transport distance than both position control (mean
difference 2.05m, Welch’s t-test, p < 0.001) and static admittance (mean difference
1.23m, p < 0.001). Static admittance also exceeded position control (mean difference

0.82m, p < 0.001).

As can be seen in Figure 5.1b, the dynamic admittance controller achieved a 100%
success rate, completing all 20 trials without dropping the payload. In contrast, the
static admittance controller completed only one successful trial, and the position
controller failed in all attempts. This is expected with high tracking error as the
position controller does not update the pose of its end-effector. The static admittance
controller completed 4 faulty trials. Trials are considered to be either successful,
faulty, or a failure. A faulty trial is one in which the payload does not fall to the
ground, but a stable grasp is not maintained either. This means the payload may

slip or rotate while being held, a behavior that isn’t ideal for transportation.

Taken together, these results confirm that the dynamic admittance controller
maintains safe force levels, adapts to disturbances, and achieves reliable transport,

in stark contrast to the failures observed under the other control strategies.

Experimental data is available online.! as is the code used to implement the

position, admittance, and DYNAMO controllers.

5.1 Discussion

The success of DYNAMO observed through experimentation likely arises from its

ability to modulate compliance in real-time based on sensed interaction forces. This

thttps://github.com/BCLab-UNM/MARIAM
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(a) Violin plot of payload transport distances under three
control strategies. Boxes show inter-quartile range; ver-
tical black lines indicate 95 % confidence intervals for the
median. Closed circles denote medians: 0.13m (position),
0.21m (admittance), and 2.18 m (dynamic admittance).
Trials were capped at 2.2 m due to Vicon workspace limits.
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(b) Bar chart of trial outcomes across control types. Green
bars show percentage of successful trials; orange hatched
bars indicate faulty trials. Dynamic admittance control
yields the highest success rate.

Figure 5.1: Performance comparison across three control strategies for cooperative payload
transport.

adaptation enables it to maintain stable end-effector contact with the payload, de-
spite variations in base alignment, accelerations and snap, and unmodeled physical
effects. The force traces in Figure 4.3 show that the controller is actively regulat-

ing interaction for the entire duration of transport. It maintains applied forces in
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a bounded, effective range, avoiding both excessive pressure that could destabilize
or damage the system and insufficient contact that would drop the payload. Simul-
taneously, the optimal coordinated trajectory plots a course for both nonholonomic
bases. However, the error accumulated by the JIANT robots while tracking that
trajectory places offline methods such as static admittance and position-based con-
trol at a disadvantage. Under a maximum pose error of about 10 cm it is expected
that static admittance control and position-based control will fail to compete with
dynamic admittance parameterization. This potential flaw with the experiment re-
sults ultimately highlights the benefits of the proposed work and applicability in

real-world applications.

The static admittance controller offered limited improvement, completing only
one successful trial and 5 faulty trials. Its inability to handle high pose error in the
mobile base may have stemmed from its fixed admittance parameters, which cannot
adapt to changing conditions or external disturbances. Static admittance does not
update its parameters in response to mobile base errors like dynamic admittance
parametrization, but it still operates a method to regulate forces and the end effec-
tor. There may be a set of admittance parameters such that static admittance leads
to successful transportation 100% of the time. This set of ideal parameters would
need to be carefully tuned for the specific manipulator, payload, and expected range
of disturbances experiences along transportation. A major limitation of this formu-
lation is that static admittance is not adaptable across robot robot systems. The
specific tuning of one system may not guarantee the same success rate on different
machines or in different conditions. Even under ideal tuning, static admittance is

not as adaptable as dynamic admittance parameterization.

In contrast, the position controller failed to transport the payload entirely. The
controller provided no compensation via the arms to correct for accumulated or

sudden base displacement. As expected, even minor amounts of error between the

48



Chapter 5. Results

mobile bases would result in payload loss from lack of contact. Although position
control has no ability to account for mobile base pose error, in ideal condition it
may be possible for position-based successful transportation. As seen in related
works, position-based control can the transportation of a payload in simulation under
perfect pose measurement and actuation [10]. In reality, there will always be some
amount of actuation error stemming from both the manipulator and the mobile base.
Furthermore, a position-controller will never regulate forces at the port of interaction.
In position-based control, the manipulator effectively behaves as a rigid object. This
type of interaction is potentially harmful to both the manipulator and the payload.
Under rigid control, inevitable disturbances in the system can lead to unexpected
and high forces. The manipulator’s joints may be damaged or overloaded. The
payload, depending on its material, could be at risk of being damaged or destroyed.
Admittance, which modulates these forces at the port of interaction, serves as a

safety mechanism even under conditions with perfect pose.

The dynamic admittance parameterization controller overcame these shortcom-
ings by using feedback to adjust interaction behavior on the fly. This has several
advantages. First, it allows the system to respond to conditions that are difficult
to model, such as unexpected interactions between the wheels and floor. Second, it
avoids the need for exact identification of the payload’s inertial or frictional prop-
erties. Third, it is generalizable to new hardware, tasks, or robot configurations,
making it especially suitable for decentralized and heterogeneous multi-robot sys-

tems.

More broadly, these results highlight the value of adaptive compliance in dis-
tributed cooperative manipulation. By tuning admittance in response to sensed
error, the system remains robust to disturbances without requiring explicit coor-
dination or communication of internal states, making the approach both scalable

and tolerant to partial failures. In parallel, successful mobile manipulation requires
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coordinated path planning for both agents. To achieve this, we used an optimal co-
operative transport planner which considers the pose and dynamics of the payload,
enabling the generation of dynamically feasible trajectories that account for coupled
motion. Together, the optimal navigation planner and the dynamic admittance pa-
rameterization controller provide a practical solution to non-prehensile multi-robot

manipulation tasks in which grasping the payload is not possible.
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Conclusion

This thesis explores the performance of dynamic admittance parameterization with
optimal coordinated planning on the task of cooperative robotic transportation. In
the DYNAMO architecture, the optimal coordinated planning module produces an
idealized trajectory for the robots to follow while the dynamic admittance param-
eterization module allows for the manipulators to adjust for disturbances from the
environment and errors accumulated in the mobile bases. This combination of co-
ordinated planning and modulation of forces at the port of interaction is demon-
strated to correct for large disturbances and error during transportation. The use of
admittance-based manipulation, which regulates forces on the end-effector, encour-
ages safe actuation of the manipulator’s joints and allows for the transportation of
fragile or delicate payloads. Non-prehensile manipulation enables the transportation
of irregular payloads or payloads without grasping points. All together, this research
demonstrates the potential for admittance-based non-prehensile MRSs to solve the

general task of transportation on a wide variety of payloads.

The DYNAMO architecture was implemented in hardware on JIANT mobile ma-

nipulators with odometry data sourced from a Vicon camera system. Experiments
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were conducted to compare the success rate of DYNAMO against a statically pa-
rameterized admittance controller and a position-based controller. The experimental
results demonstrate that under optimal coordinated planning, dynamic admittance
parameterization achieves 100% task success (n = 20 trials) compared to 5% (n = 20
trials) for static admittance and 0% (n = 20 trials) for position control. The experi-
mental results suggest that the DYNAMO architecture’s ability to regulate force at
the end effector enables safe and stable interaction with the environment. It also
demonstrates that dynamic parameterization is able to account for large margins of
error and disturbances from the mobile bases. This method of online force modula-
tion and optimal coordinated planning may be beneficial for successful transportation

in general.

It is important to acknowledge that the experimental results do not fully explore
the complexities and nuances of cooperative transportation. Although this thesis
validates the success of DYNAMO on hardware, experimentation is limited to two
low-curvature short-distance paths. Transportation can involve much more compli-
cated navigation challenges, e.g. long distances, object avoidance, changing velocity
profiles, etc. In addition, DYNAMO was validated on mobile platforms that reached
upwards of 10cm in pose error, a difference that put the position-based controller

and static admittance controller at a greater disadvantage.

The accuracy of a mobile platform can depend on the quality of the hardware,
working conditions, and control algorithms implemented. A MRS may be deployed
in environments of varying difficulty, with higher or lower guarantees on the margin
of error for mobile base pose. A transportation system operating outside on rough
terrain would have to accommodate higher errors and greater disturbances. While
transportation in warehouse conditions may utilize motion capture technology such
as Vicon and operate under a much smaller margin of error. DYNAMO shows

proficiency under high operating errors, but can also guarantee force regulation in low
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error conditions. This wide range of capability makes DYNAMO a more adaptable
system for the varying challenges and obstacles associated with mobile coordinated
transportation. Furthermore, the DYNAMO architecture paves the way for MRS
architectures capable of address the general task of transportation for varied object

types in a safe and robust manner.

The experimental results suggest that dynamic admittance parameterization with
optimal coordinated planning performs better in terms of success rate and stable force
regulation for the task of cooperative transportation. Future work intends to cover
the limitations of the experiments section and strengthen the argument for dynamic
admittance parameterization for cooperative transportation tasks in general. The
first item of improvement would be to validate the success rate of dynamic admittance
parametrization and methods it is compared against under much lower tracking error.
Future work would also further explore the cooperative transportation task space
by experimenting with different types of trajectories, different velocity profiles, and

different types of mobile platforms.
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