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Abstract
Detection of targets distributed randomly in space is a task common to both robotic and biological

systems. Lévy search has previously been used to characterize T cell search in the immune system. We use
a robot swarm to evaluate the effectiveness of a Lévy search strategy and map the relationship between
search parameters and target configurations. We show that the fractal dimension of the Lévy search which
optimizes search efficiency depends strongly on the distribution of targets but only weakly on the number
of agents involved in search. Lévy search can therefore be tuned to the target configuration while also
being scalable. Implementing search behaviors observed in T cells in a robot swarm provides an effective,
adaptable, and scalable swarm robotic search strategy. Additionally, the adaptability and scalability of
Lévy search may explain why Lévy-like movement has been observed in T cells in multiple immunological
contexts.

1 Introduction

1.1 Search in Swarm Robotics

Robot swarms typically consist of many small, rel-
atively simple and inexpensive robotic agents that
work collectively toward some common goal (Bram-
billa et al., 2013). Swarm robotic algorithms are often
inspired by biological systems that generate emergent
collective behavior from the interactions of robots
and their environment (Sahin, 2005). A major re-
search challenge is the development of swarm robotic
algorithms that allow effective navigation through
complex real-world environments without centralized
control (Winfield et al., 2005; Hecker and Moses,
2015).

Foraging is a canonical problem in swarm robotics
in which robots have to locate targets distributed
in space and transport those targets to some spec-
ified location (Winfield et al., 2005). Hecker and
Moses (2015) demonstrate an ant-inspired algorithm,

Central-Place Foraging Algorithm (CPFA), that is
error tolerant, adaptable to different resource dis-
tributions, and scalable across swarm sizes. The
CPFA uses parameters selected by a Genetic Algo-
rithm (GA) to govern correlated random walks and
the use of shared information. Here, we present an
immune-inspired search pattern that can be adapted
to replace the more complex search behavior used in
the CPFA. An advantage of a simpler pattern is that
it can be more easily analyzed and tuned for maxi-
mum search performance given different resource dis-
tributions and swarm sizes. The search pattern dis-
cussed in this work is simple, efficiently scales with
the number of searchers, is robust to error, is adapt-
able to the distribution of targets, and requires no
centralized control.

As robots have become smaller, cheaper, and are
increasingly expected to operate in natural environ-
ments, designing flexible and error tolerant algo-
rithms for robot swarms has become more important.
Robots swarms are often constructed with cheaper



components than monolithic robots, which increases
the chance of component failure and decreases the ac-
curacy of actuation and sensor input. The small size
of swarm robots and their operation in natural envi-
ronments can also lead to robot loss. Therefore, it is
advantageous for swarms to be resilient to individual
robot loss and to the effects of sensor error.

Robustness is the ability to cope with the loss or
malfunction of individuals. Malfunction may result
in loss of agents or in soft errors, such as failure to
detect a target due to imperfect sensors. Robustness
can be improved by redundancy and decentralized
control that avoid single points of failure. Scalabil-
ity is the ability to perform well with different group
sizes. Search strategies that can be tuned to opti-
mize performance for different target configurations
are adaptable.

The success of robot swarms searching for targets
in an unknown environment depends on the adapt-
ability and robustness of the search strategy. Such
tasks include surveying planetary surfaces (Fink et al.
(2005), Stolleis et al. (2016a,b) in press), land and
sea mine clearance (Weber, 1995), pollution mapping
by subsurface robots (Hu et al., 2011), agriculture
(Tamura and Naruse, 2014), survivor location in haz-
ardous environments (Birk and Carpin, 2006) as well
as military applications (Love et al., 2015).

Sensor and actuation error are crucial motiva-
tion for using a stochastic search strategy. Though
most robot swarms remain confined to simulation
(Brambilla et al., 2013), error models should be de-
rived from an embodied physical system. We use a
previously published simulation of inexpensive, ant-
inspired iAnt robots that are capable of movement,
memory, and communication (Hecker and Moses,
2015). We extend the simulation in order to scale our
immune-inspired search pattern to 32 robots. The
simulation was written in tandem with development
of the physical robots and approximates the perfor-
mance and sensing and navigation error of real iAnts
(Hecker et al., 2013).

Our use of a stochastic search strategy is in part
motivated by Ackley et al. (2012). Computational
processes that guarantee correctness are no longer
tenable as systems increase in size and complexity;
rather, large distributed systems should sacrifice de-

terminism for robustness. This recent recognition of
the value of robustness builds on earlier work by Von
Neumann (1951), which recognized that if comput-
ing systems were ever to become truly scalable, they
would need to take on aspects of biological systems
that are both robust to the failure of individual parts
and inherently stochastic.

1.2 Search in Immunology

T cell search patterns in the immune system are ro-
bust, efficient, adaptable, and scalable. T cells search
collectively but without centralized control (Groom
et al., 2012; Sung et al., 2012; Textor et al., 2014).
In order to initiate the adaptive immune response, T
cells search for dendritic cells in lymph nodes (Fig-
ure 1). Receptors on the T cell surface bind to anti-
gen indicative of infection that are presented on the
surface of dendritic cells. This search process is anal-
ogous to a swarm of robots searching for targets.

Detecting and destroying pathogens early during
an infection, before they become unmanageable, re-
lies on minimizing the time taken for T cells to de-
tect pathogens. Efficient search is crucial to mount-
ing a timely and effective immune response against
pathogen populations that often expand geometri-
cally (Mirsky et al., 2011).

Immune system search must also scale efficiently
with the number of T cells. When an immune re-
sponse is triggered, activated T cells proliferate ge-
ometrically (De Boer et al., 2001); increasing, in a
matter of days, from a population on the order of
10 cells to millions. Just as robots may be lost or
malfunction, T cells may die or malfunction, chang-
ing the number of searchers during the course of a
search.

T cell search is robust to error in the antigen de-
tection process. Each T cell bears receptors capable
of being activated by a specific set of antigens. T
cell receptors sense their local environment through
direct contact with antigen, an inherently noisy and
stochastic sampling process. T cell detection of tar-
get antigen is susceptible to false negatives especially
when antigen is in low concentrations (Fricke and
Thomas, 2006).
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Figure 1: T cell movement in a mouse lymph node.
(a) Schematic diagram of a lymph node in which T
cells search for dendritic cells (DCs) (Fricke et al.,
2013). (b) Two-photon image of T cell zone with T
cells fluorescing in red and green. (c) Model of T cell
movement with dendritic cell targets in green and T
cell tracks in various colors (Fricke et al., 2016).

T cell search strategies should also be adaptable
to different target configurations. Pathogens exhibit
an array of growth strategies and patterns (Lindquist
et al., 2004; Miller et al., 2004) that result in a variety
of antigen distributions and concentrations. The tis-
sues through which T cells search also influence the
distribution of pathogens. For example, T cells search

an essentially 2-dimensional space in the epithelium
(Ariotti et al., 2012), while T cells in the lungs and
brain must navigate higher dimensional search spaces
(Harris et al., 2012).

Effective T cell search within the lymph node envi-
ronment is particularly important because it initiates
the adaptive immune response. In lymph nodes näıve
T cells search the T cell zone for dendritic cells car-
rying cognate antigen brought from peripheral tissue
(Figure 1a). The volume of the T cell zone is on the
order of 106 times that of a T cell. Interaction of
T cells with dendritic cells presenting cognate anti-
gen leads to T cell activation. Once activated T cells
replicate, migrate out of the lymph node, and search
for antigen in peripheral tissues such as brain and
lung.

The requirements for search by robot swarms are
similar to those encountered by T cells in search of
pathogens. An effective immune response requires
T cells to minimize the time taken to find antigen
distributed in a wide variety of spatial configurations
using swarm sizes that vary by orders of magnitude,
and with imperfect target detection. We apply an
observed T cell stochastic search strategy to a robot
swarm with noisy sensors and explore the scalability,
adaptability, and efficiency of that search.

1.3 Lévy Search

Searching for targets, when there is insufficient time
to explore the entire search space necessarily involves
a trade-off between search intensity and search extent
(Méndez et al., 2013). Search extent is a measure
of how far the searcher travels from the starting lo-
cation, while intensity is a measure of local search
thoroughness. The optimal trade-off depends on the
distribution of targets. We find that Lévy search pat-
terns can be tuned to easily and effectively manage
this trade-off.

Lévy search consists of step lengths that fit a
power law distribution, where step length is defined
to be the displacement (shortest distance) between
consecutive positions. Most step lengths are small,
but with a heavy-tail, that is, a decreasing proba-
bility of larger steps and a non-zero probability of
steps of any length. In a Lévy search pattern, the



direction of search at each step is drawn from a
uniform distribution and is independent of previous
steps (i.e. is isotropic and Markovian) (Mandelbrot,
1983; Viswanathan et al., 1996). We, and others,
find Lévy search to be a useful mathematical abstrac-
tion of these patterns of motion, while noting that
Lévy search does not capture the complexity of T
cell movement. T cell motility is an active area of re-
search for which multiple models of search have been
proposed, for example, in peripheral tissues (Potdar
et al., 2008) and in lymph nodes (Banerjee et al.,
2011; Donovan and Lythe, 2012; Gérard et al., 2014;
Banigan et al., 2015). T cell movement in the brain
has displacement consistent with a Lévy search (Har-
ris et al., 2012), and T cells in lymph nodes have a
heavy-tailed distribution of step lengths (Fricke et al.,
2016).

Lévy search patterns are stochastic fractals. The
Probability Density Function (PDF) that governs the
distribution of step lengths used to generate a partic-
ular Lévy pattern is a power law:

L(x) ∝ x−µ (1)

where L(x) is the probability of a searcher moving in
a straight line for distance x. The exponent µ that
determines the shape of the PDF is known as the
Lévy exponent.

Stochastic search has been studied extensively by
biologists, especially mathematical ecologists. Ecol-
ogists typically state the problem of efficiency in the
interaction of searchers and targets as one of foragers
and food items. Foraging problems and immunologi-
cal search have much in common.

The Lévy foraging hypothesis was first developed
in order to explain the disparity between observed
super-diffusive animal motion and Brownian random
walk models. Animals searching for food tend to
maintain relatively straight trajectories for longer
distances than would be produced by a Brownian
searcher. Lévy search has been used to explain the
foraging patterns of numerous species including rein-
deer (Mårell et al., 2002), albatross (Viswanathan
et al., 1996), and human foragers (Raichlen et al.,
2014). James et al. (2011) provide a more compre-
hensive list along with a criticism of Lévy search anal-
ysis.

Whether these search patterns are truly power law
distributed is a matter of ongoing debate (Bartumeus
et al., 2005; Edwards, 2011; Humphries et al., 2012).
The issue is clouded in part because a true power law
distribution of step lengths is impossible in a finite
space. The question then is whether animals or cells
use a truncated power law distribution of step lengths
constrained by the environment in which they are
searching.

In this work we examine the properties of Lévy
search patterns because they provide a model of
search that captures aspects of the heavy-tailed
movement patterns observed in T cells, are simple
enough to be translated into robots, and exhibit the
properties of robustness, scalability, and adaptability
that are required of T cells and robot swarms.

We explore the relationship between target con-
figurations, the number of robot searchers, and µ
in Equation (1), where µ is selected by a GA. We
confine our robots to a 100 m2 arena, which places
an upper limit on the distance searchers can travel
without turning. Similarly, since power laws diverge
as step lengths approach zero, we define a minimum
step length for our robots to be 8 cm. Even with these
constraints we show that the mathematical proper-
ties of Lévy search can be used to engineer a search
pattern for robots with desirable properties.

2 Related Work

2.1 Robotic Lévy Search

In work related to our own, Van Dartel et al. (2004)
evolve neural controllers for agents searching a simu-
lated world with targets drawn from a uniform distri-
bution. The authors observed convergence of the best
performing robots to a Lévy search pattern defined
by a power law PDF exponent of 2 (µ = 2 in Equa-
tion (1)), consistent with optimal foraging behavior
described by Viswanathan et al. (1999).

Swarm robot simulations have used Lévy search in
combination with chemotaxis-inspired gradient sens-
ing (Nurzaman et al., 2009) and artificial potential
fields (Sutantyo et al., 2010) to efficiently search un-
mapped spaces with range-limited sensors. The au-



thors of these papers fix the Lévy exponent to 2, and
explore a uniformly random distribution of targets.

Sutantyo et al. (2010) report that when collisions
increase significantly with the number of searchers,
performance scales sub-linearly. The rate of collision
between searchers is determined by a number of fac-
tors, including the effectiveness and cost of collision
avoidance algorithms and the size of searchers rela-
tive to the rate of displacement. Hecker and Moses
(2015) find that even when collisions are ignored, ef-
ficiency does not scale linearly with the number of
robots. Our simulation similarly ignores collisions,
allowing us to isolate the effect of oversampling on
search performance.

Sutantyo et al. (2013) incorporate Lévy search into
a firefly optimization algorithm for an underwater
robot swarm consisting of 5 robots. They examine
two target distributions: sparse and clustered. They
find that Lévy search with µ = 2 outperforms two
alternate stochastic search strategies.

Keeter et al. (2012) use underactuated robots im-
plementing Lévy search in a 3D aquatic environment
to locate four uniformly distributed targets. They
sample various values of µ in 0.5 increments in the
range 1.1 < µ < 3 and report a monotonic im-
provement in search time as µ approaches their lower
bound of 1.1.

In order to measure the ability of Lévy search to
explore an environment with barriers, Katada et al.
(2015) use 3 robot swarms of different sizes to solve a
search problem inside a building with occluding walls.
The robots are required to maintain a line-of-sight
connected communication network while searching
for a single cluster of targets. The effectiveness of a
Lévy search with fixed µ = 1.2 is compared to Brow-
nian search and found to reduce search time.

In the work above, either the Lévy exponent, the
number of robots, or the distribution of targets is
fixed. Here we systematically map the relationship
between Lévy exponents selected by a GA and a va-
riety of swarm sizes and target configurations. This
allows us to determine whether and how the optimal
Lévy exponent depends on target configuration and
swarm size.

Beal (2015) examines the effectiveness of Lévy
search as a mechanism for positioning robots such

that they provide even coverage of a given area with
obstacles. Beal identifies a trade-off between aggres-
siveness and evenness in the pattern of dispersal.
These concepts have interesting connections to the
ideas of intensity and extent in our own work. How-
ever, their formulation of the coverage problem is sig-
nificantly different from our work (the lack of discrete
targets, for example) and does not address search per-
formance.

2.2 Lévy Search with Heterogeneous
Target Configurations

Nurzaman et al. (2011) describe an E. coli inspired
correlated random search that is similar to the search
strategy described in Hecker and Moses (2015). In
this model turning angle correlation is proportional
to target density. The resulting pattern of motion is
fit to a power law and the Lévy exponent, µ, esti-
mated. The best-fit mean value of µ decreases from
3.03 to 2.2 as target density is reduced.

Raposo et al. (2011) model the relationship be-
tween heterogeneity of searcher target distance and
optimal µ values. Using a 1-dimensional analysis they
predict that decreasing µ will increase the success of
target encounters in heterogeneous landscapes. They
suggest that this theoretical result generalizes to the
2-dimensional case. However, they do not test this
hypothesis as we do here.

2.3 Lévy Search in Immunology

Harris et al. (2012) examined T cell search patterns
in the brains of Toxoplasma gondii infected animals.
They found the pattern of motion to be superdiffu-
sive, and consistent with a generalized Lévy search
with L(x) ∝ x2.15, µ = 2.15 in Equation (1). In sup-
plemental material the authors also describe a com-
puter simulation of Brownian motion and the gener-
alized Lévy search in a sphere. Harris et al. (2012)
report that the Lévy search was able to detect targets
an order of magnitude more efficiently than Brown-
ian motion. In our own work, we also find an order of
magnitude decrease in first contact times when using
a Lévy vs. Brownian search (Fricke et al., 2013).



We investigated the movement patterns of T cells
searching for dendritic cells in lymph nodes and find
that they balance the extent and intensity of search
(Fricke et al., 2016). The difference between Lévy
search and Brownian search decreases, though is still
significant, when the efficiency metric is normalized
by the total distance searchers cover. T cells use
strategies that have aspects of Lévy search, but Lévy
search by itself is unable to explain the full range of
search behavior. This is not surprising given that im-
munological search is the result of extremely complex
interactions between numerous cell types communi-
cating via a range of chemical signals. Despite this,
we find the Lévy foraging hypothesis (Viswanathan
et al., 1999) to be a useful model of T cell search in
peripheral tissue (i.e. the brain (Harris et al., 2012))
and in lymph nodes. In addition, Lévy search pat-
terns provide a effective engineering approach for de-
signing searchers with desirable properties.

3 Stochastic Fractal Search

Deterministic search strategies may be effective in
relatively fixed environments and when localization
is error free. Theoretically, systematic raster scan
search outperforms stochastic search (Bénichou et al.,
2011; Keeter et al., 2012). However, in environments
where target configurations are unknown or change
over time, stochastic search strategies are more effec-
tive (Stephens and Krebs, 1986; Acar et al., 2003).
Deterministic strategies depend on accurate informa-
tion about the searchers’ current location, and the
ability to move from the current location to the next
without error, which is difficult in practice even with
global positioning systems (Humphreys et al., 2008;
United States Department of Defense, 2008; Maier
and Kleiner, 2010).

Errors in sensor input and in actuation introduce
randomness into even apparently deterministic pro-
cesses. iAnt robots are underactuated (i.e. are un-
able to follow arbitrary trajectories), and therefore
the problem of error free navigation from one point
to another is especially difficult. In contrast T cell
motility mechanisms are holonomic with motion gov-
erned by cytoplasmic flow into membrane protrusions

and an actin cytoskeleton that can be rapidly reori-
ented in any direction. T cell motion is stochastic,
which may be due to environmental or intrinsic fac-
tors (Linderman et al., 2010; Celli et al., 2012; Harris
et al., 2012; Textor et al., 2014). Like many swarm
robots, T cells’ sensors are short range, because they
are limited to molecular interactions at the cell sur-
face (Alberts et al., 2002).

Lévy search is easily related to the Hausdorff Frac-
tal Dimension (H), which provides a compact mea-
sure of the trade-off between intensity and extent. In-
creasing extent, by decreasing H, results in increased
displacement of searchers from their start positions
as a function of time.

The fractal dimension of a search pattern is a mea-
sure of the fraction of locations visited in a search
space. For example, Brownian motion has fractal
dimension H = 2, meaning that, asymptotically, a
Brownian search pattern visits all positions in a 2-
dimensional space.

When locations visited by a searcher consist of
a sequence of disconnected points, the motion is
called a Lévy flight (the searcher is flying or jump-
ing from point to point). Since we consider space
between points to be part of the area searched, our
Lévy search is actually a Lévy walk (Shlesinger and
Klafter, 1986).

As far as we are aware, the fractal dimension of
Lévy walks has not been formalized, therefore we cal-
culate H for Lévy flights. Since Lévy flights visit only
end points of steps, H is the dimension of the vis-
ited point-set (Seshadri and West, 1982; Mandelbrot,
1983). H for Lévy walks will be strictly greater than
that for Lévy flights. We hope to investigate the H
of Lévy walks in future work.

The PDF governing Lévy search as formulated in
Equation (2) not only describes the probability, L(x),
of observing a step length of x, but also relates the
resulting stochastic fractal to H:

L(x) =
γ

xmin

(
x

xmin

)−1−γ

(2)

where, x is the step length, xmin is the smallest pos-
sible step length, and γ determines the decay rate
of the step length probability distribution. H = γ in
Equation (2) (Mandelbrot, 1983; Hughes, 1996). The



coefficient γ
xmin

normalizes the area under the curve
to be 1 so that Equation (2) is a PDF. Since xmin

is a constant, and labeling the exponent µ results in
Equation (1) so that,

H = µ− 1 (3)

Brownian motion has H = 2 (Taylor, 1961) and µ
= 3. The resulting walk is maximally intense when
embedded in a 2-dimensional space.

The Mean Squared Displacement (MSD), a mea-
sure of search extent, of a population of searchers is
also characterized by a power law:

MSD =
〈

(~r(t+ ∆t)− ~r(t))2
〉
∝ tα (4)

where ~r(t) is the position vector of an agent at time
t and ~r(t+ ∆t) is the location of an agent after some
time increment ∆t. The difference between ~r(t) and
~r(t + ∆t) is the displacement between searcher po-
sitions at t and t + ∆t. Angle brackets indicate the
ensemble average over the population of searchers.
The MSD exponent α describes the rate of displace-
ment over time and is related to H. As α increases,
search extent increases.

The search patterns produced by a Lévy exponent,
µ, between 1 and 3 are more extensive than Brownian
motion but have lower H and so are less intensive. As
µ approaches the limiting value of 1, the MSD and
extent of search become infinite.

Figure 2 shows two search patterns. In panel (a)
µ = 3 resulting in panel (b), a Brownian pattern of
search with diffusive motion (H = 2 and α = 1). The
displacement of a Brownian random walk grows as
the square root of time. Panel (c) shows a power law
distribution resulting in Lévy search with H = 0.5,
and a superdiffusive pattern of motion with α > 1.

MSD describes how far searchers are likely to travel
from their starting locations over time. The frac-
tal dimension determines how thoroughly an area is
searched. Both MSD and the fractal dimension are
governed by a single parameter µ. Changing µ al-
lows control over the extent and intensity of search,
a property we exploit in order to adapt the robot
swarm to the distribution of targets.
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Figure 2: Stochastic fractal search patterns resulting
from uniform turning angles with a power law dis-
tribution of step lengths. (a) Power law exponent
µ = 3, fractal dimension (H) = 2, and Mean Squared
Displacement (MSD) exponent α = 1, and (b) a re-
sulting thorough Brownian pattern of search visual-
ized in the plane. (c) µ = 1.5, H = 0.5, α > 1, and
(d) a resulting Lévy search with lower dimensionality
and greater extent.

4 Methods

4.1 iAnt Robot Platform

iAnts are small autonomous robots that move with
constant speed and use an onboard iPod for compu-
tation and sensors (Figure 3a). The iAnt simulator
replicates the movement and sensing capabilities of
iAnts (Figure 3b).

The CPFA performed by an iAnt swarm has sev-
eral phases, including a stochastic search phase im-
plemented as an adaptive correlated random walk.
Here, we implement the Lévy search as an alterna-
tive stochastic search strategy. The parameters for
this search are determined by a GA which evolves
simulated iAnt parameters and produces a strategy
for the physical robots to use in the search task.
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Figure 3: The iAnt Robot System. (a) Robots search-
ing for targets. The targets are QR tags attached to
poker chips. The lamp corresponds to the robot start
position. (b) Simulation of the physical iAnt robots
in a 100 m2 search arena. Grey dots are targets. Col-
ored circles are robots: red is at the start position,
green are searching robots, blue are robots that found
a target. The simulation incorporates error modeled
from the physical iAnts.

Hecker et al. (2013) observed that iAnt robots fail
to observe targets within their viewing range 43% of
the time. We incorporate this error in our simula-
tions.

4.2 Robot Lévy Search

Lévy search is defined by the H of the random path
they generate. In order to analyze the relationship
between Lévy search efficiency and the distribution
of targets, we have the iAnts generate a Lévy search
with parameter µ (Equation (1)) and corresponding
H (Equation (3)).

The GA explores the fitness landscape and opti-
mizes µ to produce a search pattern withH that most
efficiently solves the problem of detecting a particular
distribution of targets.

iAnts draw a random variate, t, from a power law
PDF (with units 0.5 s):

t = tmin(U(0, 1))
−1
µ−1 (5)

where tmin is the minimum time (0.5 s) and µ is
evolved by the GA to maximize the discovery of tar-
gets. The GA is described in more detail in Section
4.4.

Each robot chooses a direction from a uniform dis-
tribution and moves in that direction for t time steps.
At the end of this movement, a new t is drawn and
the process repeats. Collisions with the edge of the
search area require that the robot draw a new di-
rection. In our experiments targets are discovered
without replacement, resulting in a dynamic search
landscape in which the density and spatial distribu-
tion of targets changes over time.

4.3 Cluster Analysis

We explore the optimized H evolved by the GA in
response to various target configurations. To accom-
plish this we use 256 targets in every simulation but
distribute them in varying numbers of clusters. For
generality we measure the patchiness (distance from
uniformly random) of the distribution of targets us-
ing the Hopkins index (Jain and Dubes, 1988).

We calculate H across varying numbers of clusters
in order to characterize possible target distributions.



At one extreme all targets are in a single pile, and
at the other all targets are uniformly distributed into
256 piles of one target each. We use two cluster pro-
gressions to map the Hopkins index to different con-
figurations of targets: clusters with a linear progres-
sion, 1, 10, 20, ..., 100, and a power law progression,
1, 2, 4, ..., 256. Cluster centers are positioned by
drawing x- and y-coordinates from a uniform PDF.

The Hopkins statistic tests spatial randomness by
comparing nearest-neighbor distances from uniformly
distributed points and randomly chosen targets. If
there are n targets in the set T, then let m� n and
choose m sampling points S = {s|s = (x, y)}, where
x and y are chosen uniformly to be within the search
arena. We randomly choose m targets, t̃ ⊂ T, to
compare with S. If we define U and W to be,

U =

m∑
j=1

||sj−t||,∀t ∈ T W =

m∑
k=1

||t̃k−t||,∀t ∈ T

(6)
Then the normalized Hopkins index is,

H =
U

U + W
(7)

Intuitively, the Hopkins index compares (as a normal-
ized ratio) W, the distribution of distances between
targets, and U, the distribution of distances between
targets and a set of uniformly distributed points. The
resulting ratio is a dimensionless statistic that does
not depend on the units used to measure distance.
The values of the Hopkins index lie in the interval
[0.5, 1]. For uniformly random point locations, the
expected value is 0.5. As targets become more highly
clustered, the value of the Hopkins index approaches
1.

Zhang et al. (2006) describe experiments compar-
ing cluster analysis algorithms. They report that the
Hopkins index is the most sensitive test for distin-
guishing fine scale clustering. They identify this fine
scale resolution as particularly important in biologi-
cal systems.

The Hopkins index has the advantage of being
a generalized statistic that measures clusteredness
rather than being specific to our experimental design.

Use of the Hopkins index requires the use of mul-
tiple datasets, with the Hopkins index computed for

each. We generate 10 datasets for each configuration
of targets and calculate a 95% confidence interval for
the Hopkins statistic for each target configuration we
test.

We use m = 50 sampling points and n = 256 tar-
gets. We repeat the analysis 100 times and report
the mean Hopkins index in Figure 4. Since each
configuration has 10 samples, there are 1000 Hop-
kins index samples contributing to each data point.
This allows us to confirm that the empirical PDF is
Gaussian distributed about the mean, which suggests
that variation in the Hopkins index is due to random
rather than systematic effects. We examine a total of
18 different distributions (10 linear and 8 power law
progressions).

4.4 The Genetic Algorithm

We use a GA to find values of H that maximize
search efficiency of the swarm for particular swarm
sizes and Hopkins index. The objective function be-
ing optimized is the number of targets detected dur-
ing a simulated search task. Optimization is poten-
tially difficult because the objective function is proba-
bilistic, computationally costly to evaluate, and non-
differentiable. In addition, the optimization land-
scape is unknown and may be complex. In our pre-
vious work we have found GAs to be well suited to
optimization tasks of this sort (Hecker and Moses,
2015).

The GA evaluates the fitness of various search
strategies by simulating robots that search for tar-
gets. We vary the number of robots from 1 to 32 and
the Hopkins index for target configurations from 0.5
to 1 and evolve H to maximize the search efficiency
of the robot swarm. Fitness is defined as the number
of targets detected by the robot swarm in one hour of
simulated time. Because the fitness function is eval-
uated many times, the simulation must run quickly.
Thus, we use a parsimonious simulation that uses
a gridded, discrete world without explicitly model-
ing sensors or collision detection. This simple fitness
function also helps to mitigate condition-specific id-
iosyncrasies and avoid over-fitted solutions (Hecker
and Moses, 2015).



We evolve a population of 100 simulated robot
swarms for 100 generations, though convergence con-
sistently occurred in fewer generations. We used the
recombination and mutation described in Hecker and
Moses (2015). The GA evolves µ to determine H and
to govern Equation (5). Parameter µ is randomly
initialized using independent samples from the uni-
form distribution, U(1, 10), for each swarm. We al-
low µ to take on values above 3 in order to determine
whether search patterns with extremely high inten-
sity would evolve in the presence of error. Robots
within a swarm use identical parameters throughout
the hour-long experiment. During each generation,
all 100 swarms undergo 8 fitness evaluations, each
with different random placements drawn from the
specified target distribution.

At the end of each generation, the fitness of each
swarm is evaluated as the sum total of targets col-
lected in the 8 runs. Deterministic tournament selec-
tion with replacement (tournament size = 2) is used
to select 99 candidate swarm pairs. Each pair is re-
combined using uniform crossover and 10% Gaussian
mutation with fixed standard deviation (0.05) to pro-
duce a new swarm population. We use elitism to copy
the swarm with the highest fitness, unaltered, to the
new population – the resulting 100 swarms make up
the next generation. After only 10 to 20 generations,
the evolutionary process converges on a H for the
Lévy search.

4.5 Effect of the Number of Searchers
and Target Configuration on H

We use an Analysis Of Variance (ANOVA) (Hogg and
Ledolter, 1987) to determine whether the relation-
ships between factors (swarm size and the Hopkins
index) and the observed H selected by the GA are
statistically significant. The ANOVA also quantifies
the relative contributions of factors to the resulting
H.

In Table 1 the error factor measures the amount of
variation in evolved H that results from the combi-
nation of changes in the swarm size and number of
target clusters. The sum of differences (SS) is used to
calculate the Mean Squared Error (MSE), which mea-
sures the variance within and between factor groups.
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Figure 4: Hopkins index vs number of clusters. The
Hopkins index is able to distinguish target config-
urations ranging from a single cluster to a uniform
distribution of 256 singleton clusters on a scale of 0.5
to 1. Inset: Hopkins index for a linear progression of
between 1 and 80 clusters.

5 Results

5.1 The Hopkins Statistic

We use the normalized Hopkins index as a measure
of the clusteredness of target configurations in our
experiments. The relationship between the number
of clusters and the Hopkins index is given in Figure 4.

Following Zhang et al. (2006), we find that the
Hopkins index is able to capture changes in target
configuration over a wide range. However, the rela-
tionship between the number of clusters and the Hop-
kins index is non-linear, and it becomes more difficult
to distinguish differences in target configurations as
the number of clusters approaches 1. For example,
the difference between 1 cluster and 40 clusters only
maps to a 0.05 decrease in the Hopkins statistic. De-
spite this we are able to distinguish all 18 target con-
figurations. We also find that the progression of tar-
get configurations, from 256 clusters of 1 target each
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Figure 5: Convergence of the genetic algorithm on
an optimum in the fitness landscape defined by H.
Fitness is defined to be the mean number of targets
(open circles) detected in 1 h. The increase in fitness
as the population approaches the optimal fractal di-
mension (H) is fit well by a power law (R2 = 0.948),
indicated by the dashed line.

to 1 cluster of 256 targets, maps to the full range of
the Hopkins index.

5.2 Fitness Landscape of the Fractal
Search Dimension

We use the GA to explore the relationship between
swarm size, the Hopkins index of the target config-
uration, and H. The GA evolves values of H that
provide a fitness advantage, where the fitness is the
efficiency of target detection. We define efficiency
to be the number of targets detected in one hour of
search.
H is used as a measure of the trade-off between ex-

tent and intensity selected by the GA. The Hopkins
index provides a metric for how disorganized the tar-
gets are.

An example evolution of H for 6 searchers and 100
clusters over 100 generations is visualized in Figure 5.
The landscape has a clear slope from a randomly as-
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Figure 6: Dependence of evolved values of fractal di-
mension (H) on target clusteredness. Bars indicate
the 95% confidence interval (CI).

signed starting value of µ = 6.3 (100.8) to a peak at
approximately 1.86 (100.27). A linear regression was
performed and plotted on log-log transformed data
(dashed line). The slope with 95% Confidence Inter-
val (CI) is −0.501± 0.024 and intercept with 95% CI
is 2.141± 0.008. (R2 = 0.948, p-value < 10−4). This
suggests that the fitness landscape is steep, with a
power law slope, and has a well defined optimum.

Figure 6 shows that the evolved H values are dis-
tinct for distributions of targets divided into 60 or
fewer clusters. We note that below Hopkins index
0.9 the GA is unable to discover values of H that
provide significant advantage over other values. The
efficiency of Lévy search for distributions with Hop-
kins index between 0.75 and 0.9 are statistically sim-
ilar and converge to H ≈ 0.71. For highly clustered
distributions with Hopkins index between 0.9 and 1,
H falls from 0.7 to ≈ 0.38 (Figure 7).

The rapid convergence of the GA in 10-25 genera-
tions to disjoint H depending on the factors defining
the search environment, and the power law fitness
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Figure 7: Dependence of evolved values of fractal di-
mension (H) on the Hopkins index. Bars indicate the
95% confidence interval (CI).

relationship as a function of H all indicate that the
fitness landscape for H is easily optimized.

5.3 Optimizing Swarm Search

We used a full factorial experimental design to ex-
plore the relationship between H as selected by our
GA, swarm size, and the configuration of targets.
The results are displayed in Figure 8. For the tar-
get configuration closest to the uniform distribution
(with Hopkins index = 0.5, 256 clusters), the opti-
mal evolved µ = 1.8 (H = 0.8). This is close to the
Viswanathan et al. (1999) prediction of an optimal
µ of 2 (H = 1) for the uniformly distributed target
configuration.

A two-way ANOVA analysis shows a statistically
significant correlation between the fractal dimension
of the Lévy search evolved by the GA, swarm size,
and the Hopkins index (Table 1). The p-values for
the number of robots and the Hopkins index of tar-
get clustering are less than 10−5 and 10−18 respec-
tively, indicating a statistically significant influence
of swarm size and Hopkins index on values of H.
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Figure 8: Full factorial heat map. Colors indicate
GA-selected values of H for the specified swarm size
and target configuration.

Factor SS df MSE F p-value
N Searchers 0.072 5 0.014 8.93 < 10−4

Hopkins 0.682 8 0.085 53.15 < 10−4

Error 0.064 40 0.002
Total 0.818 53

Table 1: ANOVA Results. The number of searchers
and the Hopkins index both have statistically signif-
icant effects on the GA-selected H. MSE is the re-
maining variance in H not explained by the factors.

The statistical tests indicate only that the GA se-
lects different optimal values of H for different tar-
get configurations and varying numbers of searchers.
We use simulations to measure how much search ef-
ficiency changes in response to different values of H.

We create a multiple comparison plot (Mont-
gomery, 2012) to further explore the relationships be-
tween the number of searchers, and H (Figure 9).
The majority of fractal dimensions evolved for a par-
ticular cluster size in Figure 9a can be arranged into
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Figure 9: Multiple comparison plots showing the sta-
tistical separation of mean H grouped by the number
of searchers and the number of clusters. In (a) most
optimized values of H are statistically different from
those evolved for a different target configuration. In
(b) only H evolved for N = 1 is statistically differ-
ent from H evolved for multiple robots. Open circles
are sample means and the bars indicate the Tukey
range test at 95% confidence. Non-overlapping bars
indicate populations with means that are significantly
different.

different statistically significant groups. However,
Figure 9b shows that there is no statistical difference
between fractal dimensions evolved for swarm sizes
of N > 1.

In order to investigate the magnitude of the ef-
fect of H on search efficiency, we analyze four Lévy
search patterns characterized by different H evolved
for various numbers of searchers and for target con-
figurations with different Hopkins indices.

Figures 10 shows the practical impact of the num-
ber of target clusters and the number of robots on
efficiency. Each inter-quartile box is the result of
1000 searches. We plot the efficiency of a Brownian
searcher for comparison.

In Figure 10(a) and (b), we evolve Lévy search pat-
terns on different target configurations, 1 target clus-
ter and 256 target clusters, while holding the number
of robots fixed at 8. Lévy searchers perform much
better when applied to the target configuration for
which they were evolved than when applied to a tar-
get configuration for which they were not evolved.
The change in median efficiency is 19% and 26%, with
p-value < 10−4 for both the Student’s t-test and the
Mann-Whitney U test.

In Figure 10(c) and (d), we repeat the experi-
ment, but this time we hold the target configura-
tion constant and vary the number of robots. De-
spite the statistically significant difference reported
by the ANOVA, the change in efficiency is negligible.
This suggests that the fitness landscape defined by
the interaction of the number of searchers and H is
relatively flat.

In summary, our results show that the configura-
tion of targets, as measured by the Hopkins index
of clusteredness, influences the H of optimal Lévy
search. The dependence of the optimal H on the
number of searchers (N) for N > 1 is not statisti-
cally significant. In all cases the practical impact of
swarm size on search efficiency is minimal.

5.4 Efficiency Scaling with Number of
Robots

When target discovery is difficult, for example when
there is only a single cluster of targets (Hopkins index
≈ 1), the evolved H is approximately 0.4. In this
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Figure 10: The effective efficiency of H depends strongly on the target configuration but not the swarm size.
In (a) and (b) the search pattern with H = 0.7 was evolved for a target configuration with Hopkins index
= 0.5 (256 uniformly distributed targets). The search pattern with H = 0.3 was evolved for Hopkins index
= 0.99 (1 target cluster). As expected the difference in efficiency between Brownian search (H = 2) and
either Lévy search is large (45% and 81%). The mean efficiency gains for optimized values of H are large
(19% and 26%). In (c) and (d) the search pattern with H = 0.6 was evolved for a swarm with 32 robots. The
search pattern with H = 0.45 was evolved for a swarm with 1 robot. The difference in efficiency between
Brownian search and either Lévy search is large (40% and 59%). The percentage change between the mean
number of targets discovered by the search pattern evolved for 1 and 32 robots is small (0.0% and 0.01%).
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Figure 11: Search efficiency scales linearly with the
number of robots. Closed circles are mean values
and bars are the 95% confidence interval for 100 sam-
ples. Targets are clustered with Hopkins index ≈ 1.0
(1 cluster). The dashed line is the linear regression
(R2 = 0.924, p-value < 5× 10−3). Inset: 64 clusters
(Hopkins index = 0.93). The search space saturates
resulting in sublinear scaling. Circles are mean val-
ues and bars are the 95% confidence interval for 100
samples. The dashed line is a linear interpolation.

case the relationship between the number of searchers
and search efficiency is linear (Figure 11). Doubling
the number of robots doubles the number of detected
targets. This scalability is in contrast with studies
of other movement patterns, where per robot search
efficiency declines with number of searchers (Winfield
et al., 2005; Hecker and Moses, 2015).

However, we note that linear scaling does not hold
in all cases. Over time the searched area becomes sat-
urated with unsearched locations becoming increas-
ingly hard to find (Stone, 1975). This effect is seen
in the Figure 11 inset, where we see saturation after
more than half the targets are collected. When the
target configuration is more uniform, targets are de-
pleted quickly and the effect of saturation results in
sublinear scaling. Targets with higher Hopkins index

allow search efficiency to scale with the number of
searchers since saturation is negligible.

6 Discussion

When robots are prone to malfunction, have imper-
fect sensors, or must work in natural environments,
stochastic search provides a useful alternative strat-
egy to deterministic search. Harris et al. (2012) found
that T cells searching in peripheral tissue can be mod-
eled using a Lévy search. In previous work we ob-
served the stochastic search patterns of T cells search-
ing for dendritic cells in lymph nodes and charac-
terized them as being reasonably approximated by a
heavy-tailed search pattern (Fricke et al., 2013, 2016).
Here we explore the ability to optimize the efficiency
of Lévy search in a robot swarm.

A significant advantage of Lévy search is its sim-
plicity and adaptability: a range of search behaviors
can be defined using just one parameter. Evolving so-
lutions is fast since the fitness landscapes are simple
with well defined optima (Figure 5).

Our analysis shows that there is a systematic re-
lationship between the Hausdorff Fractal Dimension
(H) optimized by a Genetic Algorithm (GA), the
number of searchers, and the configuration of tar-
gets as measured by the Hopkins index. Specifically,
H selected by the GA decreases as the clustered-
ness and the Hopkins index of the targets increase.
This supports a prediction made by (Raposo et al.,
2011) based on their theoretical analysis of the one-
dimensional case.

Using this empirical relationship (Figure 8) we are
able to predict values of H that result in improved
search performance given various target configura-
tions. The GA revealed a simple fitness landscape
that likely could be explored with other optimization
methods.

The fractal dimension of Lévy search can easily be
adapted to the configuration of targets (Figure 10).
In future work we will leverage this property to allow
robot swarms capable of online classification of target
distributions to select the value of H that results in
the most efficient search strategy.



While an ANOVA shows that the number of
searchers has a statistically significant effect on the
GA-selected value of H, this translates into negligible
differences in search efficiency (Figure 10 panels (c)
and (d)). We also find a linear relationship between
the number of searchers and the efficiency of search,
up to the point where so many targets have been
found that search itself becomes more difficult (Fig-
ure 11). The insensitivity of Lévy search efficiency to
the number of searchers is a clear benefit to swarm
robotics. As robots fail or get lost, the optimal H
for a given target configuration does not change sub-
stantially.

A possible explanation for the linear scale-up in
efficiency with the number of Lévy, as opposed
to Brownian, searchers, is that when Brownian
searchers start from the same location the high frac-
tal dimension of their movement results in locations
being revisited by other robots in the swarm. For
n searchers the number of unique locations visited
in time t is proportional to t ln

(
n
ln t

)
. Only after t

exceeds en do searchers employing Brownian search
avoid oversampling (Larralde et al., 1992). For a
swarm of 256 robots performing Brownian search this
implies wasted effort for more than 10100 time steps.
In contrast, for n searchers employing an evolved
Lévy search pattern, the number of unique locations
visited is proportional to nt, resulting in relatively
little oversampling (Viswanathan et al., 1996).

We also find that there is little interaction between
the number of searchers and the configuration of tar-
gets; the lack of interaction in those factors removes
a potential complication in the proper selection of H.

Lévy search has been used to model biological
search including immunological search. The prop-
erties of Lévy search we explore in this paper have
implications for the biological systems in which Lévy
search models have been suggested. For example, in
the immune system T cell swarms of various sizes are
required to find a wide variety of targets distributed
in different ways in different tissues. The distribution
of dendritic cell targets in lymph nodes may be very
different than virus-infected cells in the lung or brain,
and in each case the number and distribution of tar-
gets may change over time. Because targets of im-
munological search are heterogeneously distributed,

and the number of searchers vary by many orders
of magnitude during the search process, the adapt-
ability and scalability of Lévy search may be partic-
ularly useful in immune search. Our adaptation of
the Lévy exponent with a GA suggests how a simple
movement pattern could be adapted by natural se-
lection to search efficiently given a variety of target
configurations over a wide range of T cell numbers.

Search for clustered targets is an important prob-
lem in swarm robotics because it generalizes to many
real-world applications, such as collecting hazardous
materials, natural resources, search and rescue, and
environmental monitoring (Liu et al., 2007; Parker,
2009; Winfield, 2009; Brambilla et al., 2013). A
particularly exciting application is space exploration.
For example, NASA recently announced the Swar-
mathon challenge in which robots operate in con-
cert to autonomously search for, retrieve, and map
patchy natural resources, such as water ice. These
robot swarms are intended to be used for resource
exploration on other planets (Ramsey, 2015). In this
arena particularly, robot searchers must be robust to
hardware failure and sensor limitations, and adapt-
able to heterogeneous target configurations. Scalabil-
ity is desirable because it allows flexibility in robot
allocation. For example, rich resource areas may be
assigned more robots without loss of efficiency. Our
work demonstrates a mechanism for tuning the frac-
tal dimension of a search pattern to most efficiently
encounter targets given a measure of their clustered-
ness, while also being scalable and robust.
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