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Abstract
Effective search strategies have evolved in many biological systems, including the immune

system. T cells are key effectors of the immune response, required for clearance of patho-

genic infection. T cell activation requires that T cells encounter antigen-bearing dendritic

cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial

determinant of how quickly a T cell immune response can be initiated. Previous work sug-

gests that T cell motion in the lymph node is similar to a Brownian random walk, however,

no detailed analysis has definitively shown whether T cell movement is consistent with

Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes

and a computational model that demonstrates how motility impacts T cell search efficiency.

We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion.

Instead, T cell movement is better described as a correlated random walk with a heavy-

tailed distribution of step lengths. Using computer simulations, we identify three distinct fac-

tors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step

lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogene-

ity in movement patterns. Furthermore, we show that T cells move differently in specific fre-

quently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells

change their movement in response to the lymph node environment. Our results show that

like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fun-

damental feature of biological search.

Author Summary

The immune system is responsible for clearing disease-causing infections, and T cells are
an important immune cell type that helps eliminate viruses and bacteria. To become acti-
vated, T cells must encounter another type of immune cell called dendritic cells in the
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lymph node. T cell search for dendritic cells is similar to animal search for food. Here we
precisely analyze how T cells move using search patterns originally developed to describe
animals. We find that T cell motion is a complex combination of multiple strategies
including moving in a persistent direction and using different step sizes. This allows T
cells to balance the need to search both extensively throughout the lymph node and also to
search some regions thoroughly for possible infection. Furthermore, we use a computer
model to demonstrate that T cells are more likely to be found in specific locations in
lymph nodes. We call these locations “hotspots”. We find that T cells in hotspots move dif-
ferently, apparently searching more thoroughly, suggesting that T cells can adapt to their
environment, similar to animals foraging for food. These results show that T cells share
fundamental search strategies with foraging animals, exhibiting both persistence and
adaptation.

Introduction
Search has been extensively studied in biology, particularly in ecology, to understand how ani-
mals search for food, mates and prey. The pattern of movement by searching agents affects
search efficiency in a variety of biological contexts [1–3]. Optimal foraging theory suggests that
animals, including social animals such as ants and bees, have evolved strategies to individually
or collectively maximize food intake in minimal time [4].

Similar to foraging animals, T cells of the immune system search for targets to mount an
immune response. T cells are a critical immune effector, required to clear viral infections and
to help B cells produce antibody. In order to initiate an effective immune response, naïve T
cells must encounter and sample dendritic cells (DCs) bearing cognate antigen in lymph nodes
(LNs). In the absence of infection, T cells continuously enter and exit LNs interacting with
DCs. Upon infection, DCs present cognate antigen and provide stimulatory signals leading to
T cell activation. T cell-DC interactions are required for naïve T cells to survive, activate and
eventually clear infection as well as maintain immune memory [5–7].

T cell activation is promoted by repeated sampling of nearby DCs [8], while at the same
time T cells explore the entire population of DCs for rare antigen indicative of infection. This
presents T cells with an optimization problem in which T cells must balance thoroughness and
extent of search. This requires that many T cells search across a broad extent, contacting many
DCs quickly, a process similar to optimal foraging in animals. Simultaneously, T cell search is
sometimes thorough, repeatedly sampling in a small area [8]. Both of these factors contribute
to the overall rate at which T cells encounter DCs within LNs, which is a critical component of
organismal fitness impacting the overall timing of the immune response.

Relatively little quantitative analysis has been done to describe how T cells move in LNs or
how that movement affects the rate at which T cells encounter DCs. Initial studies to under-
stand the type of T cell motion in LNs from pioneering two-photon imaging of naïve T cells
suggested that T cells move using a simple diffusive random walk, analogous to Brownian
motion of molecules [9,10]. Following these studies, computational modeling of T-DC interac-
tions have often used simple diffusive random walks to represent T cell behavior [11,12]. How-
ever, subsequent studies have not precisely described T cell motion in LNs, so it is unclear
whether diffusive random walks are appropriate models for T cell movement.

Optimal random search strategies have been extensively studied in ecology, and ecological
models of movement may be useful for characterizing T cell motility and search efficiency.
Brownian motion, Lévy walks, and correlated random walks (CRWs, also called persistent
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random walks), have been proposed as idealized biological search models [13], but careful
quantitative analysis is required to understand how well search models characterize T cell
motility and search efficiency [14]. Brownian motion is often referred to as a simple random
walk and is characterized by movement with uniformly distributed turning angles and small
fixed step sizes relative to the time resolution of observation [10,15–18]. Qualitative similarities
between Brownian motion and the movement of microorganisms resulted in simple random
motion being used as a dominant model of cell motion [19]. Brownian motion results in diffu-
sive movement in which distance travelled is proportional to the square root of time. In two
dimensions this results in a normal distribution of speeds, and in three dimensions it results in
a Maxwell distribution of speeds [20].

Lévy walks exist between ballistic (or straight directional) motion at one extreme and
Brownian motion at the other. In contrast to Brownian motion, the step lengths of Lévy search-
ers fit a power law distribution with most step lengths being small, but with a heavy-tail, that is,
a decreasing probability of larger steps and a non-zero probability of steps of any length [2,13].
Lévy walks have been used to model animal movement, for example, in albatross, ant, aphid
and human foraging, and more recently, T cells in the brain [2,21–24]. Both Brownian and
Lévy walks assume that the direction of search at each step is drawn from a uniform distribu-
tion and is independent of previous steps (i.e. is isotropic and Markovian). CRWs on the other
hand use fundamentally different mechanisms to model similar patterns of motion that tend to
persist in direction over time. CRWs depend on the distribution of turning angles between suc-
cessive steps leading to directional persistence. In search modelled by CRWs, the current direc-
tion of motion probabilistically influences future step directions [13]. On relatively short time
scales, Lévy walks and CRWmay be difficult to distinguish since they both produce superdiffu-
sive motion [25], that is, displacement that increases faster than the square root of time. Com-
pared to diffusive movement, superdiffusion increases search extent and decreases search
thoroughness.

Despite the fact that many search strategies are well-characterized, there has been no sys-
tematic analysis of T cell motion in LNs. The lack of clarity in empirical studies has led to T cell
motility being modelled using Brownian motion [18], Lévy walks [24], and correlated random
walks (CRW) [8,26], or a combination of movement patterns [27]. Recently, Harris et al.
showed that the movement of T cells in Toxoplasma gondii infected brain tissue fits a Lévy
walk resulting in superdiffusion and efficient detection of protozoan targets [24]. It is not clear
if Levy movement has not previously been found in LN because such movement does not
occur there, or simply because it had not been looked for. The lack of precise quantitative
understanding of T cell motion in LNs leads to inconsistent models and limits our ability to
determine how T cell motility affects the efficiency with which T cells encounter DCs.

In this study, we analyze T cell search behavior in LNs using two-photon microscopy. We
begin our analysis with traditional statistical methods that describe the velocities, step lengths,
displacement, and turning angles taken by naïve T cells searching for DCs. We then extend
these analyses to more accurately and comprehensively describe motility patterns, including
using maximum likelihood estimates (MLE) to fit experimental data. Our study statistically
analyzes T cell search strategies in LNs, and uses multiple efficiency metrics that measure the
spatial thoroughness and extent of T cell search. We then directly quantify the contribution of
different types of motion to the efficiency of T cell search. Additionally, by comparing T cell
movement to the patterns generated by null models of random motion, interesting non-ran-
dom interactions between T cells and their environment become apparent, suggesting that T
cells adapt movement in response to environmental cues. Our null models reveal hot spots that
are visited more frequently than can be explained by chance. Our results suggest that even a
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precise characterization of T cell movement based on the assumption of randommovement
does not fully capture the complexity of T cell movement in the LN environment.

Results

Movement of naïve T cells in lymph nodes is superdiffusive, not
Brownian
Two photon microscopy (2PM) has been used extensively to study the movement of T cells in
intact lymph nodes [15,16,18,28,29]. We isolate bulk primary T cells from LNs of naïve C57Bl/
6 animals, fluorescently label T cells with dyes, reintroduce labeled T cells into recipient mice,
and then use 2PM to image labeled T cells in intact explanted LNs of recipients (see Materials
and Methods for further details). We track cells for up to 10 minutes and include all motile
cells in observation windows. We eliminate tracks with total track length shorter than 17μm or
that show squared displacement less than 300μm2 (= 17μm x 17μm) as described previously by
Letendre et al. [30]. The data analyzed here are from 5,891 individual T cell tracks from 41
fields from 12 experiments. We group those 41 fields into 7 datasets, each dataset containing
fields imaged using frame rates within one second of each other. This allows us to combine
data across fields when performing analyses, such as velocity autocorrelation, that depend on
the frame rate.

We observe T cell velocities and motility coefficients largely in agreement with those previ-
ously published [9,16,30,31]. We calculate the diffusion coefficient using the unweighted aver-
age method [32,33]. T cells move with a mean speed with 95% confidence interval = 5.81
±0.024 μm/min, median speed = 4.22 μm/min, motility coefficient, D = 19.2±0.534 μm3/min,
calculated from a linear fit MSD of 5,185 tracks (out of 5,891 tracks filtered for r2 > 0.8). The
motility coefficient is calculated using a linear model fit to the first 25% of each displacement
curve and for positions not exceeding the 10 min track time.

Displacement is commonly used as a first step to assess whether movement is consistent
with a Lévy walk or Brownian motion (sample tracks in S1 Fig)[24,31]. We determine the dis-
placement of individual T cells over time. Fig 1A shows the mean squared displacement (MSD)
of one of the 7 datasets, as well example tracks with lower (Fig 1B) and higher (Fig 1C) r2 val-
ues. We then calculate the linear fit to the log-log-transformed data. Logarithmically trans-
forming data before applying a linear regression is a common way to measure the exponent of
a power-law relationship between dependent and independent variables [34]. Log-log-trans-
formed Lévy walks produce displacement exponents, α, between 1 and 2 [35]. We calculate the
distribution of α for all T cell tracks and find that 56% of T cells have a displacement exponent
α falling in the expected window for a Lévy walk (Fig 1D). Only 28.3% of cell tracks are subdif-
fusive (α< 1), and the remaining tracks (15.6%) have a best-fit displacement exponent indica-
tive of accelerating motion (α> 2). Because low r2 values of linear fits to log-log-transformed
data may indicate that the data are not well-described by any displacement exponent, we repeat
the analysis on data sets restricted to r2 values> 0.5, which discards 33% of all tracks, and r2 >
0.75, discarding 50% of all tracks (see S2 Fig for figures with different r2 filters). Increasing r2

filtering decreases the fraction of cells in the subdiffusive window, but the qualitative message
remains the same: T cells demonstrate heterogeneous behavior, with some displacements con-
sistent with subdiffusive, Brownian, ballistic and even accelerating motion, but the majority of
T cells are superdiffusive but sub-ballistic. Fig 1D shows the histogram of α for tracks with an
r2 > 0.8, other r2 thresholds are shown in S2 Fig, including all tracks with no filtering in S2A
Fig.
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Naïve T cell movement in LNs is not consistent with a Lévy walk
While displacement analysis suggests most T cells are consistent with a Lévy walk, another
defining feature of Lévy walks is that the inverse power law complementary cumulative distri-
bution function (CCDF) for step lengths has an exponent, μ, between 1 and 3. Therefore, we
analyzed T cell step lengths for the μ exponent. We define a step to be the resultant of a velocity
subsequence in which each T cell velocity vector deviates by no more than 15° from the previ-
ous vector and a step length is the distance covered by a step. Fig 1E shows that a power law fit
to the population of T cell step lengths is only valid if almost 94% of the data are excluded from
the analysis (see Materials and Methods: Distribution fitting). The resulting best-fit μ exponent
for the remaining 6% of the power law tail is 4.05 (Fig 1E). The curvilinearity, the poor fit, as
well as the μ value all indicate that a Lévy walk is not a good description of T cell motility. On
average 51% of data must be excluded in order to obtain a maximum likelihood estimated
(MLE) power law fit (see Fig 1F and 1G for example tracks with low and high percentage of
steps in the power law tail; see S3A and S3D Fig for histograms of μ using other GoF threshold
values; and see S2 and S3 Figs for additional analysis.)

We determined the number of tracks that fit both 1< μ<3 and 1< α<2 parameters. Setting
our goodness of fit (GoF) filtering criteria to require that at least 70% of the data per track is
retained in calculating the exponent μ (Fig 1F), and the r2 statistic for the power law exponent
α is at least 0.7, we find that only 5.5% of all T cell tracks fit both criteria for Lévy walk (Fig
1H). We note that the tracks excluded when filtering by r2 and those filtered by the percent of
track in the power law tail both tend to be subdiffusive. For any filtering criteria the vast major-
ity of T cell tracks are not Lévy walks (S3E Fig).

To further analyze T cell motion, we quantify speeds (T cell displacement between consecu-
tive frames multiplied by the frame rate) of all T cell tracks (Fig 2A and 2C) and find that in

Fig 1. T cells move in lymph nodes with some features of a Lévy walk. Lévy walks are characterized by particular power law exponents of mean squared
displacement (MSD) and step length distribution. (A, bottom) Observed T cell MSD vs. time. The dashed line is the linear regression with slope α = 1.41
indicating superdiffusion. (A, top) The number of data points in the MSD calculation. (B) Example displacements for a single T cell track with r2 = 0.52, and (C)
with r2 = 0.93. (D) Histogram of α for individual tracks with r2 > 0.8 (see S2 Fig for other r2 thresholds) with labels indicating the range of values of α consistent
with Brownian, Lévy and ballistic motion. (E) Empirical complementary cumulative distribution function (CCDF) of all 145,731 step lengths for all 5,077 cells.
The x-axis is all possible distances less than the maximum observed, the y-axis is the probability that an observed step length exceeds a particular value of x.
The dashed line (offset for clarity) with slope 4.05 is the best fit to the power law tail of the CCDF which includes only 6.15% of the steps [36]. The line with
slope 1.19 is the best fit to all data. (F,G) Examples of step length distributions and MLE fits for tracks with 49% and 93% of the track in the tail. (H)
Percentage of tracks in the Lévy region for μ and α power law exponents and their intersection. Data are included when the r2 > 0.5 for α and at least 50% (left
histogram) or 70% (right histogram) of the track steps are retained in fitting the power law tail.

doi:10.1371/journal.pcbi.1004818.g001
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LNs T cell speeds range from 6.5×10−4 μm/s to 0.9 μm/s (Fig 2A). We fit experimentally
derived speeds (Fig 2A) and step lengths (Fig 2B) to idealized probability distributions. We use
parametric distributions because they are associated with well-known generative processes; for
example, the Gaussian distribution is produced by the cumulative effect of additive processes,
the lognormal distribution is often associated with multiplicative or branching processes [37],
and the Maxwell distribution is a product of Brownian motion in three dimensions. We use

Fig 2. Distributions of T cell speed and step lengths with MLE fits. For (A) speed and (C) step length the lognormal function is the best fit (see Tables 1
and 2 for likelihood values and model parameters). Fits for normalized speed (B) and normalized step lengths (D) are divided by the mean speed or step
length of the track from which they are drawn. (E) Histogram of all 149,592 observed turning angles. The green line is the maximum likelihood estimation of
the gamma distribution used to model turning angles in the efficiency simulation. (F) Turning angle autocorrelation for 23,169 vectors from the 537 T cell
tracks observed in one dataset. The correlation in movement direction decays until reaching zero at approximately 240 s.

doi:10.1371/journal.pcbi.1004818.g002

Table 1. MLE fits to step lengths and normalized step lengths (N = 145,731 steps). Negative log-likelihood measures the relative ability of candidate
models to explain the observed data (For additional fits tested, see S1 and S2 Tables). The corrected Akaike information criterion (AICc) and Bayesian infor-
mation criterion (BIC) (S2 Table) confirm that order of fit quality is not due to the number of model parameters. The most negative log likelihood and AICc
scores are the best fits; in this case that is the smallest positive score for the lognormal distribution. The last columns lists the distribution parameters that
were selected by MLE. See S1 and S2 Tables for other distribution fits and goodness of fit statistics.

Step lengths

Distribution Negative log Likelihood×105 AICc×105 MLE Parameters

Lognormal 2.65 5.29 μ = 0.4818 σ = 0.9192

Gaussian 3.36 6.72 μ = 2.3895 σ = 2.4229

Maxwell 4.02 8.04 a = 3.8497

Power Law(Levy) 4.58 9.16 α = 1.1921

Normalized Step lengths (step length/track mean step length)

Lognormal 1.20 2.40 μ = -0.2217 σ = 0.6896

Gaussian 1.61 3.23 μ = 1 σ = 0.7324

Maxwell 1.69 3.37 a = 0.5117

Power Law(Levy) 3.32 6.63 α = 1.2245

doi:10.1371/journal.pcbi.1004818.t001
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likelihood measures to rank how well different distributions explain the observed data (Tables
1 and 2).

The distribution of T cell step lengths and speeds are more consistent with a lognormal dis-
tribution than with Brownian motion (defined by a Gaussian or Maxwell distribution) or a
Lévy walk (defined by a power law distribution of speeds [38]) as shown by the higher values in
the MLE for power law fits in Tables 1 and 2. The variance of observed T cell speeds and
lengths is high, and the distributions have a heavier tail (greater right skew) than both Gaussian
and Maxwell distributions. The power law probability distribution over-represents both very
small steps and very large steps compared to observed T cells. The lognormal distribution
shows the best statistical fit for both speed and step lengths. The gamma distribution also fits
the observed speeds very well (S1 and S2 Tables, S4 Fig). However since gamma and lognormal
are often used to model the same phenomena, we present only lognormal here [39].

It is possible that the right skew in the speed distribution arises from the variance between
track mean speeds rather than from speed variance within tracks [22]. To test for this possibil-
ity, we divide each speed drawn from within a cell track by the cell mean speed (called “normal-
ized”) and ask whether the distribution becomes less heavy-tailed. We find that both
normalized speed and step length distributions are still best fit by a lognormal distribution
(compare Fig 2A with Fig 2C, 2B and 2D and the normalized vs. raw lengths and speeds in
Tables 1 and 2), but the right skew is decreased. Our observations indicate that the heavy-tailed
lognormal distribution is not simply due to distinct populations moving at different mean
speeds, though heterogeneity in speed within the population is a factor.

Both Brownian motion and Lévy walks assume that the angle of each turn is drawn from a
uniform random distribution. We analyze the turning angles of each T cell at each time step
and find that T cell turning angles are not uniform, and that there is a bias toward turning
angles of less than 90° (Fig 2E). The non-uniform distribution of turning angles suggests that T
cells may move according to a CRW. We fit distributions to turning angles using MLE and find
the gamma distribution to be the best fit, although it cannot capture all of the variation in the
bi-modal distribution (Fig 2E green-dotted line). We then performed an autocorrelation analy-
sis of directions over time to determine whether there is a dependency between the direction of
T cells at one time step and the previous time steps (Fig 2F). We find that T cells show turning
angle autocorrelation consistent with a CRW (indicated by positive values in Fig 2F). The cor-
relation persists for approximately 4 minutes. Our cross-correlation analysis shows no drift in
the observation fields (Materials and Methods: Equation 2).

Table 2. MLE fits to speeds and normalized speeds (N = 159,746). The lognormal distribution has the most negative log-likelihoods and AICc score and
therefore is the best fit. The parameters selected by MLE are shown for each distribution. See S1 and S2 Tables for other distribution fits and goodness of fit
statistics.

Speeds

Distribution Negative log Likelihood×105 AICc×105 MLE Parameters

Lognormal -1.84 -3.68 μ = -2.5027 σ = 0.9329

Gaussian -1.61 -3.23 μ = 0.1161 σ = 0.0881

Maxwell -1.12 -2.24 a = 0.0071

Power Law(Levy) 0.122 0.245 μ = 1.2069

Normalized Speeds (speed/track mean speed)

Lognormal 1.22 2.45 μ = -0.1669 σ = 0.6154

Gaussian 1.37 2.74 μ = 1 σ = 0.5706

Maxwell 1.32 2.65 a = 0.4414

Power Law(Levy) 3.58 7.16 μ = 1.2446

doi:10.1371/journal.pcbi.1004818.t002
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T cells balance search for unique individual targets and interactions with
multiple targets
A key function of naïve T cell search within LNs is to find and interact with antigen bearing
DCs. To determine whether different types of search can affect T cell interaction with DCs, we
use an agent-based model, using biologically informed parameters, to assess the degree to
which different modes of random search predict the observed pattern of T cell search efficiency
(i.e., the number of DCs encountered per unit time). We reproduce features of T cell movement
by creating search tracks using the best distribution fit to speeds (Table 2) and turning angles,
limited by the total distance covered and time observed for empirical T cell tracks. We run sim-
ulations with DC targets placed with 3 different degrees of clustering: highly clustered (DC cen-
ters placed in 10μm radius spheres), moderately clustered (in 20μm radius spheres) to more
evenly dispersed (in 40μm radius spheres) (S5 Fig). We confirm that these DC placements
result in a range of clusteredness according to the Hopkins aggregation statistic that ranges
from 0.44 for dispersed clusters (close to the 0.5 value expected for a uniform distribution) to
0.2 for compact clusters. We confirm that Brownian motion in our simulations results in diffu-
sive movement (S6 Fig). We then compare efficiency of modelled search with observed T cell
tracks from the experimental data across this range of DC cluster sizes.

We calculate efficiency of T cell search in two ways. First, we determine how many unique
“DC” targets were encountered by each T cell in a specific period of time. Previous studies sug-
gest that naïve T cells have no a priori information about the location of DCs in LNs [11,12].
Second, we determine how many total DC target encounters occur in the specified time. Total
contacts count repeated contact with the same DC while unique contacts counts only one con-
tact per DC. Total contacts are important for T cell activation and potentially survival while
unique contacts are a measure of how long it may take T cells to find rare DCs presenting cog-
nate antigen. The simulation addresses two questions: do statistical descriptions of T cell move-
ment produce search efficiencies that are similar to those of observed T cells; and, how do the
relative efficiencies of the idealized models compare to each other and experimentally observed
T cells.

Not surprisingly, the efficiency of observed T cells show a much wider range of variability
compared with idealized models (Fig 3A), and we find clear differences in search efficiency
between observed T cells and some idealized models. Brownian searchers are approximately
40% less efficient than observed T cells for unique DC contact (Fig 3A and 3B and Table 3). In
contrast, the power law (Lévy) fit was 30%more efficient than observed T cell tracks, and as
expected, more efficient than any other model for unique contacts with DCs. We also modelled
a correlated random walk (CRW) as well as a CRW with a lognormal distribution of step
lengths (a lognormal modulated CRW, LogMCRW). We show that the idealized search that
most closely fits the observed efficiency of experimentally derived T cell search in LNs is the
LogMCRW (Fig 3B), in keeping with CCDF fits (Fig 2). Efficiency is not dependent on place-
ment of DC targets in the model: efficiency measures remain similar across multiple target dis-
tributions and degrees of clustering (Table 3). Thus, LogMCRW is not only the best
description of the step length distribution, but also the best efficiency match for unique contact
T cell search in LNs.

Our simulation of unique target search also gives a quantitative estimate of the contribution
of different types of T cell movement to search efficiency (Table 3). Correlation in angles of T
cells increases the search efficiency by ~10% (from -42% for Brownian without correlation to
-28% for CRW; -17% for lognormal to -7% for LogMCRW). The heavy-tailed step lengths con-
tributed a 20% increase in efficiency (-42% Brownian to -17% lognormal). These results show
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that T cell motion is a complex mix of multiple motility parameters that contribute to overall T
cell search e�ciency.

In addition to unique antigen search, multiple DC contacts by T cells contribute to T cell
activation and may also be required for survival [41–43]. Interestingly, we �nd that the e�-
ciency of total contacts is reversed from that seen for unique contacts (compareFig 3B and 3D,
Table 4). Brownian searchers made the greatest number of total contacts, while power law
(Lévy) searchers made the fewest total contacts (Fig 3D). Brownian searchers tend to resample
the same locality and are therefore more thorough in their search at the cost of reduced search
extent. In contrast, superdi�usive heavy-tailed searchers leave DC clusters more quickly and

Fig 3. T cell search balances unique and total contacts with targets. Interquartile boxplots show search e�ciency for DCs in 10 μm radius clusters.
Panels (A) and (B) show unique contact e�ciency; (C) and (D) show total contact e�ciency. (A) and (C) show 1000 e�ciency samples for each of the 41
�elds. (B) and (D) compare the percent change in median search e�ciency for each candidate search model relative to observed T cell search (indicat ed by
the line at 0). See Tables 3 and 4 for other target distributions and signi�cance values. Outliers are not shown for clarity.

doi:10.1371/journal.pcbi.1004818.g003
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their total contact rate falls, increasing extent at the cost of thoroughness. Again, LogMCRW is
closer to observed data than the other simulated patterns, and it successfully balances total con-
tact rate with exploration of new DC clusters (Fig 3D).

We also performed a statistical bootstrap analysis in which search tracks were generated by
sampling uniformly from all observed track speeds and turning angles [41]. While the effi-
ciency of total contacts for bootstrap tracks is statistically indistinguishable from observed T
cells, bootstrap tracks are 12% less efficient than observed cells in unique contacts (Fig 3B and
Table 3). Thus, individual T cell tracks confer efficiency for unique DC target search that is lost
when the steps within a track are randomized, suggesting that there is underlying heterogeneity
in T cell tracks that increases T cell search efficiency.

Naïve T cells show heterogeneity in movement patterns
To assess potential variation in T cell motility, we analyzed differences in speeds across individ-
ual T cell tracks. We find that the distribution of speeds is highly skewed for cells with lower
mean speeds, but there is less skew for cells with high mean speeds (Fig 4A). The fastest cells
(mean speeds>15 μm/min, Fig 4D) produce more symmetric speed distributions as demon-
strated by the low skew and kurtosis. Also, distribution fitting of speeds shows that the speeds
are now best fit by Gaussian and Maxwell distributions (Table 5). In contrast, slow cells (mean
speed<5 μm/min, Fig 4C) have a heavier tailed distribution of speeds as shown by skew and

Table 3. Percent change of each idealized search strategy for unique contacts compared to the empirical search strategy across 3 different target
distributions. Table entries are percent change in median search efficiency from observed ± 95% confidence interval. Two p-values are shown: the first indi-
cates the significance of the change inmedian efficiency between the observed and idealized runs (N = 10 runs, each run consists of 4,100 samples, Fig 3B).
The second p-value tests whether all raw efficiency values differ between observed and idealized runs (N = 41,000, Fig 3A). All p-values are calculated using
the Mann-Whitney U test. The values in parentheses are the Hopkins aggregation statistic. All search strategies are statistically different from observations
except LogMCRW in the most diffuse 40 μmDC clusters (in bold).

Search Strategy

Target Distribution Brownian CRW Lognormal Bootstrap LogMCRW Power Law

10 μm (0.2) -41.88 ± 0.82 -28.11 ± 1.09 -15.91 ± 1.69 -12.98 ± 0.99 -7.35 ± 1.92 27.63 ± 5.44

p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4

20 μm (0.32) -39.828 ± 0.64 -25.87 ± 0.70 -13.39 ± 1.62 -9.926 ± 1.37 -3.98 ± 1.94 34.17 ± 8.49

p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4 p < 10−3, 10−4 p < 10−4, 10−4

40 μm -41.88 ± 0.81 -22.75 ± 0.55 -9.621 ± 1.97 -4.798 ± 1.37 -0.218 ± 2.17 36.02 ± 6.41

(0.44) p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4 p < 10−3, 10−3 p = 0.85, 10−4 p < 10−4, 10−4

doi:10.1371/journal.pcbi.1004818.t003

Table 4. Percent change of each simulated search strategy for total contacts compared to the empirical search strategy across 3 different target
distributions. Table entry format is identical to Table 3. These values correspond to Fig 3C and 3D. Brownian motion, bootstrap and LogMCRW are not sig-
nificantly different from the observed distribution of efficiencies when targets are more clustered (in bold), but power law search underestimates the efficiency
of search for total contacts.

Search Strategy

Target Distribution Brownian CRW Lognormal Bootstrap LogMCRW Power Law

10 μm (0.2) 8.7 ± 1.16 12.94 ± 1.34 7.24 ± 3.25 0.73 ± 2.59 8.4 ± 3.66 -28.66 ± 2.43

p < 10−4, 0.29 p < 10−4, 10−3 p < 0.01, 0.05 p = 0.63, 10−4 p < 10−3, 0.73 p < 10−4, 10−4

20 μm (0.32) 12.71 ± 1.52 15.67 ± 1.54 9.22 ± 2.72 2.29 ± 2.72 12.18 ± 2.64 -26.27 ± 4.14

p < 10−4, 0.87 p < 10−4, 10−4 p < 0.05, 0.05 p = 0.19, 10−4 p < 10−4, 0.8 p < 10−4, 10−4

40 μm (0.44) 17.71 ± 1.86 20.89 ± 1.58 13.07 ± 3.24 4.52 ± 2.51 16.31 ± 2.69 -24.08 ± 4.4

p < 10−4, 10−4 p < 10−4, 10−4 p < 10−4, 10−4 p < 0.05, 10−4 p < 10−4, 10−4 p < 10−4, 10−4

doi:10.1371/journal.pcbi.1004818.t004
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kurtosis with lognormal remaining the best fit (Table 5). This is not due to the number of data
points available at high speeds, as skew decreased even at the speeds with the highest number
of data points (Fig 4B). However, “slow” and “fast” are not discrete populations, as a mixed
Gaussian cluster analysis shows no evidence of discrete populations defined by mean speed
and variance (S7 Fig). These results suggest that T cells exhibit a continuum of movement pat-
terns within LNs, leading to different types of searches: slow moving cells show a heavy-tailed
distribution while faster moving cells are more Brownian.

“Hotspots” in the LN environment show differing patterns of T cell motion
The variation in movement shown in Fig 4 suggests that T cells may alter their search pattern
in response to environmental cues. Our previous work shows that altering movement in
response to environmental cues can enhance search efficiency [44,45]. Extending our previous
work in [46], we analyze T cells in LN to identify whether T cells movement changes within
local microenvironments of the LN. To do this, we identify whether there are locations in the
LN that are visited by T cells more frequently than predicted by a null model. We analyzed

Fig 4. T cells moving at different speeds show different movement patterns. (A) Skew of step length distribution as a function of track mean speed and
(C) the number of data points as a function of track mean speed. Tracks with mean track speeds (MTS) less than 5μm/min (B) and greater than 15μm/min (D)
were selected to illustrate different MLE model fits for fast and slow tracks (for fits see Table 5).

doi:10.1371/journal.pcbi.1004818.g004

Table 5. Best fit likelihood andMLE estimated parameters for the fastest and slowest cells. The Gaussian distribution better fits tracks with mean
speed > 15 μm/min while lognormal better fits tracks with mean speed < 5 μm/min. The step speed distribution for fast tracks has a shorter and lighter tail than
the sample of tracks with slower mean speeds. Best negative loglikelihood scores are in bold.

Mean Speed < 5 μm/min Mean Speed > 15 μm/min

Distribution -log Likelihood (×105) MLE Parameters -log Likelihood (×103) MLE Parameters

Lognormal -1.09 -3.35 0.826 -2.60 -1.35 0.387

Gaussian -0.918 0.0482 0.0407 -2.73 0.277 0.0958

Maxwell -0.789 0.0013 -2.66 0.0286

Power Law -0.492 1.25 2.018 1.35

Skew 2.37 0.52

Kurtosis 13.3 3.98

doi:10.1371/journal.pcbi.1004818.t005
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each observation field separately; each field was discretized into cubes of 20μm per side, which
is approximately twice the diameter of a naïve T cell. We used the LogMCRW simulation we
described earlier as a null model (for details of null model see Materials and Methods, S11 Fig).
We identified spots that were visited by T cells in the simulation null model and then identified
spots that were visited by T cells from actual experimental data. We found that experimental T
cells visited certain spots at significantly higher frequency than the null model (see S11 Fig
[47]). Spots that were visited at a frequency 2σ higher than the null model were called “hot-
spots” (examples shown in S12 Fig). Hotspots were observed in 37 of the 41 observation fields.
The null model results in only 2.73% of visited locations being hotspots (as expected given that
we identify hotspots as those visited 2 standard deviations above the mean, S11 Fig); in con-
trast, in empirical observations, 10.51% of locations from observed experimental data are hot-
spots. We also find that our null simulation predicts 32% tracks will visit hotspots but our
observed tracks show that 51% of observed tracks visit hotspots. These data all support the
hypothesis that hotspots exist in empirical observations.

We define hot tracks to be T cell tracks that intersect with hotspots and cold tracks to be
those that do not. Hot tracks have median speeds that are significantly higher than cold tracks
with hot track speed at 7.27 μm/min and cold tracks at 4.25 μm/min (median speed is 37.4%
greater for hot tracks than for cold, p-values<< 10−3 Mann-Whitney U test). We also find
that the step length distributions of hot tracks have a significantly lower skew and kurtosis
compared to cold tracks (Table 6), indicative of more Gaussian distributions in hot tracks. Fur-
thermore, though the step lengths of hot tracks and cold tracks are both best fit by lognormal
PDFs, the Gaussian and Maxwell distributions are nearly as good for hot tracks (Fig 5A and 5B
and Table 6). These results show that T cells that visit hotspots exhibit different, and more
Brownian movement, suggesting that they search more thoroughly than T cells that do not
visit hotspots.

The presence of hotspots suggests that a microenvironment within the LN might modify T
cell behavior. To show T cell adaptation within LNs, we ask whether hot tracks (T cells that
have visited hotspots) behave differently in hotspots versus other locations within the LN (cold
spots). We find that T cells from hot tracks spend more time in hotspots than in other locations
(cold spots), with T cells spending a median of 5.36 time steps in hotspots compared to 4.5 in
cold spots (p-values<< 10−3 Mann-Whitney U test, Fig 5C). T cells that visit hotspots are
found in those hotspots between 13.3% and 23.2% (95% confidence interval) more often than
they are in other LN locations, i.e. cold spots. Thus, hotspots are visited by more T cells than
can be explained by chance, the T cells that visit those hotspots move differently than those
that don’t, and T cells spend more time in hotspots than in other locations; all suggesting that
T cell movement changes in response to the LN environment.

Table 6. Hot and cold track step lengths show different MLE distribution fits. Hot tracks tend to be faster than cold tracks and more Brownian in their
movement pattern. The high kurtosis and skew is due to a long tail in the distribution of step lengths belonging to tracks that do not visit hotspots.

Hot Tracks Cold Tracks

Distribution -log Likelihood (×105) MLE Parameters -log Likelihood (×105) MLE Parameters

Lognormal 1.29 0.671 0.752 1.85 0.819 0.583

Gaussian 1.405 2.504 1.72 4.22 4.53 22.3

Maxwell 1.48 3.077 8.24 171

Power Law 2.96 2.65 1.21

Skew 1.45 11.12

Kurtosis 6.74 136

doi:10.1371/journal.pcbi.1004818.t006
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Discussion
T cell activation depends on interactions between T cells and antigen-bearing DCs in second-
ary lymphoid organs including LNs [9,17]. In this study, we quantify the movement of T cells
within LNs, and how efficiently they encounter DC targets (in terms of both unique and total
contacts). We use quantitative analysis and computer simulations to show that a search strat-
egy that employs both correlations in successive turning angles and a lognormal distribution of
speeds is most representative of observed T cell motion, which we call a LogMCRW. However,
T cell motion does not perfectly fit any simple parametric model, and different types of motility
are observed depending on where the T cell is and how fast the T cell moves.

Accurate characterization of T cell movement is important because motility determines the
timing of other immune processes downstream of T cell activation. Several groups have pub-
lished models of how T cells interact with DCs in LNs. Mirsky at al. [48] provide a review.
Recent data also suggests that motility can affect both T cell recirculation [49] and T cell dwell
time leading to activation especially when detecting rare antigen [8,41]. Different studies
employ different models of T cell motion due to the lack of precise understanding of how T
cells move. For example, some models assumed Brownian movement while another assumed a
CRW with a Gaussian distribution of steps and speeds, and yet another uses tracks boot-
strapped from empirical data [18,26,40,41]. Our results show that the LogMCRW pattern of
motion not only fits the experimental data, but also most faithfully reproduces the modelled
search efficiency of observed T cell movement.

We use an agent-based model to compare empirical T cell movement to idealized simula-
tions. These simulations demonstrate that simulated Lévy walks overestimate real T cell search
efficiency (for unique DC contacts) while the Brownian walk, CRW, and bootstrap tracks
underestimate it. The reverse is true for total contacts. A lognormal distribution of steps com-
bined with correlation among steps (LogMCRW) best represents empirical T cell search effi-
ciency for total and unique contacts.

We identify and quantify three mechanisms that increase T cell search efficiency for unique
targets: 1) heavy-tailed step lengths (comparing lognormal versus Brownian search accounts
for 20%); 2) directional correlation (comparing lognormal vs. LogMCRW accounts for 10%);
and heterogeneity among T cells (comparing bootstrap to observed accounts for 10%) (Fig 4
and Table 3). Thus, computational models allow us to quantify the contribution of a variety of
factors to T cell search efficiency.

Fig 5. T cells visiting hotspots show a different distribution of speeds than T cells that do not visit
hotspots. Cold tracks (A) have a speed distribution that is more peaked at low speeds with a more skewed,
heavy-tailed distribution compared to hot tracks (B). For fits, see Table 6. (C) Visit frequency, or number of
observations of hot tracks in hot vs. cold spots. Hot tracks were observed to visit hotspots more than cold
spots. The graph shows the distribution of average number of visits by hot tracks to hotspots versus cold
spots. Interquartile box plot of the distribution with the red line indicating the median number of visits. Outliers
are not shown. **** indicates p<<10−3 using Mann-Whitney U test.

doi:10.1371/journal.pcbi.1004818.g005
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In our study, we thoroughly analyze the motility of naïve T cells in LNs in the absence of
antigenic stimulation. Our results largely agree with a recent study by Banigan et al. also show-
ing persistent directional movement for 3–4 minutes by naïve T cells [27]. T cells have previ-
ously been shown to move in “streams”, which may correspond to the persistence in
movement. Persistence may also reflect cells following a path of least resistance or intrinsic reg-
ulation of cell movement, for example, the time required to form a leading edge.

In contrast to Banigan, we find a lognormal distribution of T cell steps and show that the
heavy tailed distribution of step lengths is important for search efficiency. Banigan et al. also
suggested that modeling T cell movement using 2 subpopulations may be a more faithful
reproduction of T cell movement in LN [27]. Our data does not support the existence of 2 sub-
populations of T cells. Rather, we find that there may be subregions (hotspots) within the LN
that leads to differences in T cell search behavior. T cell motion near hotspots is less direction-
ally persistent and more Brownian (Fig 5). These results demonstrate that T cells react to their
environment, and more specifically, they suggest that T cells that visit hotspots stay longer and
thus search more thoroughly at those hotspots.

The identity of hotspots remains to be determined. It is possible that hotspots are locations
of DCs or high endothelial venules from which T cells enter the LN. T cells that search areas
with DCs more thoroughly may have more repeated contacts with the same DC as well as con-
tacts with more DCs within the same area, enhancing the potential for productive T cell inter-
action with DCs presenting cognate antigen. One potential mechanism for hotspots is
chemokine production by DCs, although there is no direct experimental evidence for this.
Another possibility is that hotspots may reflect an underlying structure such as the fibroblastic
reticular cells that may form a network that guides T cell movement [50]. However, the distri-
bution of our hotspots does not obviously reflect any network structure. Others have tested the
potential role of a network on T cell search efficiency [11,51] and found that the presence of a
network has little impact on T cell search efficiency.

Upon activation by cognate antigen, T cell motility within the LN changes, T cells slow
down over a period of several hours and begin to form long lived interactions with DCs, essen-
tially ending the “search” phase [16,17]. Effector T cells then exit the LN and enter peripheral
sites of inflammation. Effector T cell motion in the brains of Toxoplasma gondii infected ani-
mals was shown to be a generalized Lévy walk based on displacement analysis [24]. This differs
from our findings that T cells in LNs do not fit a Lévy walk. The difference between our find-
ings and those of Harris et al. may result from intrinsic differences between naïve and effector
states. Another possibility is that differences between the tissues that the T cell resides in, for
example, the LN for naïve T cells or the brain for effector T cells, contain structural and chemi-
cal variability leading to different motility.

As expected, our simulation shows that Lévy searchers are efficient at finding rare targets,
but Brownian motion is more efficient when measuring total contacts. These results show that
biological context may be important for T cell search efficiency: in the search for rare and
unique antigens, the heavy-tailed search is more efficient. However, in situations where high
numbers of DC contacts may be important for T cell activation and potentially survival,
Brownian motion has an advantage. The observed T cell motion appears to combine the best
properties of each, utilizing multiple modes of motility to achieve efficiency in different
contexts.

Previous studies have used modeling to reproduce experimental results, and we use this
approach to show that the LogMCRW statistical model captures immunologically important
properties of T cell search. Similar to empirically observed T cell movement, combining multi-
ple features of random search in the LogMCRW balances search over a wide spatial extent to
find unique targets, with thorough search that allows repeated contacts within a cluster. In
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addition, we extend our use of modeling to identify novel features of the biology underlying T
cell movement in LNs. Because the LogMCRW is a good estimate of search efficiency, it also
provides a useful null model with which observed T cell motion can be compared, revealing
that T cells move differently in different locations in the LN. Thus the statistical model and
search efficiency simulations not only characterize cell movement and provide estimates of
search efficiency, they can also be used to reveal the complexity of T cell motility.

Indeed, comparison to our null model reveals non-random T cell movement which may
indicate change in response to some feature of the LN. We find that T cells respond differently
to specific microenvironments within the lymph nodes, which we call hotspots. The presence
of hotspots suggest that, like foraging animals, T cells may respond to features of their environ-
ment in order to guide their search [52,53].

Prior work has characterized the movement of foraging animals using both CRW and Lévy
walks. Lévy walks in particular have been suggested as optimal to maximize foraging rate
[2,16]. Our work suggests that in order to balance maximizing repeated (total) contacts with
maximizing new (unique) contacts, the LogMCRWmay be more effective. More generally,
walks with heavy tailed step length distributions and correlation among turning angles may be
most effective at balancing the thoroughness and extent of search. In foraging animals as well
as searching T cells, natural selection may opt for movement that is effective in a variety of cir-
cumstances, even if that movement is difficult to describe analytically.

T cells provide a unique window into biological search strategies because so many searchers
can be visualized rapidly in relatively intact natural conditions. Such movement patterns can
be included in agent-based models, even if they are not easy to present in closed form equa-
tions. Our data suggests that the LogMCRW strategy might be a better approach than either
Brownian or Lévy walk in situations that need to balance repeated contacts with already-found
targets and discovery of new items. Additionally, T search for patchily distributed DCs [16] in
the LN may demonstrate response to cues, similar to other collective foragers such as ants col-
lecting patchily distributed resources in natural habitats [54].

In contrast to previous assumptions about simple random motion, our analysis shows that
T cell movement in lymph nodes is complex, and involves correlation, variation in step lengths,
and heterogeneity in response to local environments. The deviation from idealized models
reflects the immunological need to balance the spatial extent and local thoroughness of search.
The complex movements of T cells in LN provide a window into biological search strategies
and how natural selection may balance multiple objectives in a variety of biological contexts.

Materials and Methods

Ethics statement
The protocol was approved by the IACUC at the University of New Mexico (protocol # 10–
100487). The breeding and maintenance of mice used in this research conform to the principles
outlined by the Animal Welfare Act of the National Institutes of Health. All efforts were made
to minimize suffering with use of ketamine and xylazine when appropriate. Euthanasia was
performed by isofluorane overdose.

Mice
C57BL/6 mice were from Jackson Laboratories (Bar Harbor, ME). All mice were bred and/or
maintained in a specific pathogen-free condition in barrier facilities (Albuquerque, NM) and
conform to the principles outlined by the Animal Welfare Act and the National Institutes of
Health guidelines.
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T cell observations using two-photon microscopy
Lymph nodes were prepared according to the protocol described previously [30,55–57]. T cells
were purified by nylon wool or by negative selection using the pan-T cell kit (Miltenyi Biotec)
as previously described by Cannon et al. [28] and purified T cells labeled with either 1μM
CFSE (Invitrogen) or 5 μMCMTMR (Invitrogen, Carlsbad, CA). 5 to 10×106 labeled T cells
were injected I.V. into recipient mice and inguinal lymph nodes were removed 15–18 hours
later and imaged using two photon-imaging.

Imaging experiments were performed using either a workstation with a Bio-Rad Radiance
2000 scanner mounted on an Olympus upright microscope with a chamber at 37°C or a 2-pho-
ton microscope in the Fluorescence Microscopy Facility in the UNM Cancer Center with a
mode locked Ti:Sapphire infrared laser (Coherent Ultra II; tunable from 680–1080 nm; avg.
power 3.5 W) for multiphoton fluorescence excitation on a Zeiss Axiovert 200 stand. For the
Bio-Rad 2P, explanted lymph nodes were placed on a glass coverslip in the chamber. The sam-
ple is perfused with a 37°C solution of DMEM (phenol red free, Gibco) bubbled with 95% O2

and 5% CO2. T cell motility within a lymph node was monitored in the T cell area at a mini-
mum of 50–70μm below the surface of the node. For the Zeiss 2P, the microscope stand is a
Zeiss Axiovert 200 with motorized XY stage and IR-corrected long working distance objectives
(25X:multi-immersion and 40X:water immersion) and image acquisition via a Zeiss LSM510
scanhead. Ex-vivo tissue and organs are maintained during microscopic observation in a stage
microincubator system (LCI-Live Cell Imaging) equipped with heating, humidity, CO2 atmo-
sphere and perfusion. Explanted lymph nodes were placed on a glass coverslip in the chamber.
The sample is perfused with a 37°C solution of DMEM (phenol red free, Gibco) bubbled with
95% O2 and 5% CO2.

For 4D analysis of T cell motility, multiple stacks in the z-axis (z step = 3 μm) were acquired
every 15–20 s (depending on the number of z stacks acquired) for 15–40 min, with an overall
field thickness of 40–60 μm. Cell motility was analyzed with Imaris software (version 6; Bit-
plane). Tracks that lasted fewer than 3 time steps (duration filter in Imaris) were not taken into
account in the analysis. Length filter (threshold of 17 μm = 3 times the diameter of the cell)
Displacement2 filter (threshold of 300 μm2 = 17 μm X 17 μm) were also used to discard tracks
of non-motile cells. Videos were made by projecting the 4D information along the z-axis in a
single plane.

The observation area covers approximately two thirds of the T cell zone of the lymph node.
Cell motility was analyzed with Imaris 6.0 (Bitplane AG, Zurich, Switzerland). The point
sequences generated by Imaris were used to create position vectors joining adjacent cell loca-
tions (sample tracks S1 Fig). The Euclidean norm for each vector was calculated and divided by
the time resolution to produce speeds.

Distribution fitting
Following Fisher [58] we use maximum likelihood estimation (MLE) to parameterize candidate
PDFs. We fit probability model parameters using cumulative distribution functions (CDF),
rather than by binning data which has been shown to bias conclusions about random walk dis-
tributions [59]. We define a step as a vector of T cell motion that does not deviate beyond 15°
from the original direction (see S8 Fig for analysis of threshold dependency).

Five PDF models (lognormal, Maxwell, Gaussian, exponential, and power law) for step
length and speed were selected for analysis based on a combination of their negative log-likeli-
hood scores, their importance in other biological processes, and their previous use in modeling
T cell movement. Our selection of the relative goodness of fit (GoF) of each candidate PDF to
empirical data was evaluated using likelihood functions, Anderson-Darling (AD), Bayesian
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information criterion (BIC), corrected Akaiki Information Criterion (AICc), and the Kolmogo-
rov-Smirnov (KS) test.

Following Clauset, Shalizi, and Newman [36], we fit power laws using MLE and with the

power law PDF: P xð Þ ¼ m�1

xmin

x
xmin

� �m

where xmin is the smallest observed value, P(x) is the proba-

bility of x occurring, and μ is the estimated parameter. We used the xmin value with the best KS
score of all possible choices as an estimator of the beginning of a power law tail. The percentage
of positions in a track in the power law tail gives us a measure of the quality of the power law
fit. Using this measure we show that a power law fit to the population of observed steps
excludes 94% of the data (Fig 1F and 1H).

Autocorrelation and cross-correlations
Velocity autocorrelations were calculated following [60] and [61]. The autocorrelation function
is the ensemble mean for the n-1 possible delay times given the n vectors defining a T cell track.
The result is a measure of how much T cell direction depends on previous directions as a func-
tion of time delay. Our use of autocorrelation is distinct from the analysis of periodic velocity
vector magnitudes by Beltman et al. [40], but the similar to that done in Banigan et al. [27].

Letting v(pk(t)) be the unit velocity vector at time t belonging to the kth path, we defined the
cross-correlation function, Ccross, to be: Ccross(p) = hv(pk(t)) � v(pm(t))i, 8k,m where pk and pm
are T cells paths. This measures the step angle dependence between T cell paths at the same
moment in time, that is, a measure of drift due to global effects on the observation field.

Mean squared displacement
Mean squared displacement (MSD) coefficients, commonly called the α exponent [1,13,21],
were calculated using least-squares polynomial fit by numerically solving the associated Van-
dermonde matrix [62] and fit quality assessed with the r2 measure. Parametric and linear fits
were also made to mean displacement. In Fig 1A we present only the first 10 minutes of obser-
vation (as was done in [16,63,64]) at which point the curve reaches its first stationary inflection
which in [61] is indicative of unconstrained motion and therefore appropriate for determining
α. In addition, in this study few tracks persist beyond 10 minutes and so the MSD signal also
becomes dominated by noise (Fig 1A top).

Heterogeneity
We tested for heterogeneity by comparing track speed skew (Fig 4) and AIC evidence ratios as
a function of mean speed. The sample skew of the distribution of speeds was calculated using
the method of moments applied to a mean speed sliding window of width 0.125 μm/s progress-
ing in 0.1 μm/s increments.

Search efficiency simulation
The simulation to test T-DC interaction efficiency was implemented as a continuous (floating-
point) 3D model written in C++. Boost libraries [65] were used to generate variates drawn
from model PDFs. Because the clustering and density of targets can influence which movement
types are most efficient, we replicated the estimated density of DCs and varied the degree of
clustering in our simulations.

We use LN DC density of 2–5% as determined in [43] to calculate a target DC density of
3.17×10−5 targets/μm3. Our observed fields have an average volume of 6.3×106 μm3. We scale
the number of targets as a function of field volume in order to maintain the same target density
between simulation fields. DCs were clustered into groups of 10 and were uniformly distributed
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within spheres defining a cluster. By varying the sphere radius, we controlled the degree of clus-
tering from uniform to highly clustered. A 3D version of the Hopkins statistic [66] was used to
measure the resulting non-uniformity of target placement (Tables 3 and 4). In the Hopkins sta-
tistic scores range from 0 to 0.5 where 0 is highly clustered and 0.5 indicates no clustering (S5
Fig).

T cell tracks were observed and recorded as 3D coordinate sequences within a bounding
box defined by the visible section of the ex vivo lymph node. Idealized models (Brownian,
CRW, Power Law, etc.) of search were parameterized by the speeds and turning angles esti-
mated from observation (see Distribution fitting). Searchers in the idealized model start at the
same initial positions as the observed T cells, and exist in a volume equal to the observed field
volume. Candidate search patterns were generated for each of the 41 observation fields.

Our efficiency measure is the number of targets found divided by the sum of the time used
by searchers. Since we modelled walks rather than flights (i.e. speeds are finite) the sum of D(k)
for all simulated tracks k was limited to the total distance travelled by observed T cells. There-
fore the average velocity of the population of searchers is kept within the observed range. Based
on an assumed radii of 5 μm for DCs and T cells, targets were marked as discovered if a
searcher track passed within 10 μm of a target point. We define two versions of the efficiency
measure, one that increments its output value only when a target was not previously detected
by that searcher, and another that increments for all targets found. These two versions allow us
to record unique contacts and total contacts (Fig 3).

The simulation measures the target encounter rate and determines, using the Mann-Whiney
test, whether the candidate search models’ search efficiency is significantly different from that
observed in T cells. We use the Mann-Whitney test because the observed and simulated distri-
bution of efficiencies is non-Gaussian. Simulations were replicated 100 times per field, produc-
ing 4,100 efficiency data points for each search model. The entire process was repeated 10
times in order to generate confidence intervals for the simulation; in all this results in 41,000
efficiency samples.

Identifying hotspots and hot tracks
In order to test whether the environment within LNs influences T cell movement we extend an
analysis begun in [46]. Fields were discretized into 8000 μm3 cubes (the length of a cube is
20 μm, approximately twice the diameter of a T cell). We use the LogMCRW simulation as a
null model and record the number of times a location is visited by unique T cells in simulation
(repeated 10 times). We use a 2σ (two-standard deviation) threshold for determining which
locations are visited more frequently in the observed fields than expected and call these hot-
spots. This is repeated for each of the 41 individual observational fields. All other visited loca-
tions are called cold spots. A comparison of the number of hotspots in simulation and in the
observed data gives an indication of how much behavior is not captured by the simulation.

We define hot tracks to be T cell tracks that visit hotspots and cold tracks to be T cell tracks
that do not. We also examine the number of visits by hot tracks to cold spots and hotspots. We
also examine the distribution of step lengths and speeds for hot and cold tracks.

For additional information on methods, see supplementary materials and methods (S1
Text).

Supporting Information
S1 Text. Supplemental Methods.
(DOCX)
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S1 Fig. Example of individual T cell tracks.
(TIF)

S2 Fig. Histogram of mean squared displacement exponents with varying r2 filters. As the
linear regression slopes are filtered by the r2 statistic, the histogram narrows but maintains its
mean value. (A) r2 > 0, 3.5% of tracks filtered, (B) r2 > 0.25, 21% filtered, (C) r2 > 0.5, 33%,
(D) r2 > 0.75, 50%, and r2 > 0.9, 69% of tracks filtered out. (E) r2 > 0.8 with regions of interest
marked.
(TIF)

S3 Fig. Histogram of power law exponents fit to the CCDF of step length for tracks with
varying percentages of their steps in the power law tail: (A) all tracks, (B) tracks with at
least 50%, (C) 70%, and (D) 90% of steps in the power law tail. An increasing fraction of
steps in the tail results in μ values being more likely to be between 1 and 3 but as a total fraction
of all tracks those well fit by a power law falls rapidly, for (A) 35%, (C) 31%, (D) 24%, and (E)
7% of total tracks are represented. (E) Fraction of Tracks with Lévy characteristics. Power law
exponents, μ, for step length and α, for displacement. Tracks are grouped by fit quality (GoF).
Retained percentage refers to the amount of data discarded in order to obtain a power law fit
(see methods for μ fitting). Displacement α, values are filtered by r2.
(TIF)

S4 Fig. Weibull probability plot. The gamma probability distribution has comparable nega-
tive log-likelihood scores to the lognormal distribution (speeds shown here). The lognormal
model overestimates the probability of high speeds at the tail of the distribution while the
gamma distribution over estimates the probability of very low speeds.
(TIF)

S5 Fig. Sample DC target cluster distributions in simulation. Panel A: 20 μm radius clusters
with Hopkins index = 0.2. Panel B: 20 μm radius clusters with Hopkins index = 0.32. Panel C:
40 μm radius clusters with Hopkins index = 0.44.
(TIF)

S6 Fig. Mean squared displacement for simulated search models.Numbers in color indicate
the slope of the mean-squared linear fit to the log-log transformed displacement curve. As
expected, Brownian motion has a slope close to one, as does the lognormal step distribution
model. All other models produce superdiffusive motion.
(TIF)

S7 Fig. We found no evidence of distinct subpopulations defined by variance and mean
speed. An expectation maximization Gaussian mixture model finds that clustering tracks
according to track speed and track variance results in a single grouping. The color bar and con-
tour map indicate the height of the best-fit Gaussian model. Increasing the number of Gaus-
sians to fit incrementally up to 16 does not reveal any natural clusters. This figure supports the
skew plot Fig 4C. Example field (1 of 41).
(TIF)

S8 Fig. The dependency between the angle used to calculate steps from T cell positions and
the number of steps resulting. For example at threshold of 180° all steps in each track are
combined and the resulting number of steps in the population is small. The influence of the
angle threshold on the number of combined positions is smooth. No natural choice of thresh-
old angle is apparent.
(TIF)
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S9 Fig. As the number of data points in tracks lasting more than 10 minutes drops, MSD
becomes dominated by noise. As a result we perform linear regression only on the first 10
minutes of each track (green line). (1 of 7 datasets).
(TIF)

S10 Fig. Visualization of search tracks. Dark green targets are undiscovered. Targets become
cyan if they are within the search volume of a T cell track (detected). In this example targets are
grouped into clusters of 10 with radius 10 μm. Each T cell track is assigned a random color to
help distinguish them from one another. Example field (1 of 41).
(TIF)

S11 Fig. Distribution of hotspot visitor counts. Spot counts for (A) simulated locations over
10 repetitions, and (B) observed locations. Example plot of observed field and the correspond-
ing simulation (1 of 41). The red lines correspond to the hotspot threshold for this field (μ+2σ
of the simulated location visitor counts). For this field the threshold is 4.047. Of the 498 loca-
tions in the simulated field 17 (3.41%) are hotspots (mean of 10 simulations). The observed
field had 621 locations, of which 78 (12.5%) are hotspots, an increase of 258% over simulation.
(TIF)

S12 Fig. Visualization of hotspots and hot tracks in 4 of 41 observed fields.Hotspots are
indicated by black rectangles where the area is proportional to the number of unique visitors.
Hot tracks are displayed in color with each color corresponding to a track. Tracks that do not
visit a hot spot are shown in grey with the shades corresponding to individual tracks. Plots are
a projection of a 3D space into the xy-plane. Overlapping hotspots indicate distinct z-coordi-
nates.
(TIF)

S13 Fig. A potential source of error is the dependence of the observed speed on the frame
rate of observation.We test whether this confounding factor exists in our experiments by fit-
ting a linear model to the mean speed for each of our seven binned microscope video frame
rates vs the observed mean speed. Our frame delays range from 13 s to 20.7 s. The slope of the
best MLE fit is 0.0013. The p-value is 0.66 and the r2 is 0.041. Together this suggests there is no
relationship between frame rates and observed speed and that the observed speeds are not arti-
facts of the measuring rate.
(TIF)

S1 Movie. Video of the simulation in progress. The video shows four instances of the effi-
ciency simulation 1) An observed field, 2) Brownian motion simulation, 3) Power Law simula-
tion, and 4) LogMCRW. Individual T cell tracks are variously colored according to track.
Target DCs are green initially and turn cyan when encountered by a T cell.
(MP4)

S1 Table. Extended step fit statistics. Table shows the Akaike information criterion evidence
ratio (AIC E), applied to first 7 rows only; the corrected Akaike information criterion (AICc);
negative log-likelihood (nlogl), Kolmogorov-Smirnov (KS), Anderson-Darling (AD), chi-
squared (χ2), and Bayesian information criterion (BIC). Score ranking is in parentheses. Differ-
ences in BIC and AICc scores are less than 1:103 of the AICc score.
(DOCX)

S2 Table. Extended speed fit statistics. Table shows the Akaike information criterion evidence
ratio (AIC E), applied to first 7 rows only; the corrected Akaike information criterion (AICc);
negative log-likelihood (nlogl), Kolmogorov-Smirnov (KS), Anderson-Darling (AD), chi-
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squared (χ2), and Bayesian information criterion (BIC). Score ranking is in parentheses. Differ-
ences in BIC and AICc scores are less than 1:103 of the AICc score.
(DOCX)

S3 Table. Maximum likelihood estimated parameters and associated likelihood scores for
steps calculated using a 30° threshold. The lognormal probability distribution is still the best
fit when steps are calculated using a 30° rather than 15° threshold. Compare to Table 1 in the
main text.
(DOCX)
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