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ABSTRACT

In order to trigger an adaptive immune response, T cells
move through lymph nodes (LNs) searching for dendritic
cells (DCs) that carry antigens indicative of infection. We
hypothesize that T cells adapt to cues in the LN environ-
ment to increase search efficiency. We test this hypothesis
by identifying locations that are visited by T cells more fre-
quently than a random model of search would suggest. We
then test whether T cells that visit such locations have dif-
ferent movement patterns than other T cells. Our analysis
suggests that T cells do adapt their movement in response
to cues that may indicate the locations of DC targets. We
test the ability of our method to identify frequently visited
sites in T cells and in a swarm of simulated iAnt robots
evolved to search using a suite of biologically-inspired be-
haviours. We compare the movement of T cells and robots
that repeatedly sample the same locations in space with the
movement of agents that do not resample space in order
to understand whether repeated sampling alters movement.
Our analysis suggests that specific environmental cues can
be inferred from the movement of T cells. While the precise
identity of these cues remains unknown, comparing adaptive
search strategies of robots to the movement patterns of T
cells lends insights into search efficiency in both systems.

Categories and Subject Descriptors

I.2.9 [Artificial Intelligence]: Robots—Autonomous ve-
hicles; F.2.2 [Theory of Computation]: Nonnumerical
Algorithms and Problems—Sorting and searching
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1. INTRODUCTION
Identifying algorithms and behaviours for effective dis-

tributed search without centralized coordination is a chal-
lenging computational problem, particularly important for
distributed systems such as wireless sensor networks and
swarm robotics. Complex biological systems have evolved
spectacularly successful decentralized collective search, ex-
emplified by ant colonies and immune systems. Ant colonies
with millions of individuals collectively forage in dynamic
landscapes without hierarchy or centralized control; their
decentralized foraging strategies have dominated resource
consumption in challenging and dynamic environments across
the globe for over 100 million years [22]. Immune systems
comprised of trillions of cells differentiated into dozens of
cell types are forced by an evolutionary arms race to rapidly
find and eradicate previously unseen pathogens, with each
cell acting independently of any centralized controller.

A goal of artificial immune systems is to emulate biological
strategies in computational systems; however, the mecha-
nisms that generate adaptive biological search are not always
well understood. In this paper we use computational tools
to infer whether certain cells of the immune system search
randomly or whether they adapt to their search environ-
ment to search more efficiently. We then compare movement
patterns during search in the immune system to decentral-
ized search in robotic swarms whose behaviour was inspired
by foraging ants. Our robots adapt to sensed features of
their environment to improve search efficiency. Here we ask
whether T cells similarly adapt to features of their environ-
ment during search. By studying both systems in the same
framework, we gain insights into distributed search in both
immunology and swarm robotics. Additionally, we improve
our understanding of the movement patterns of searching
T cells, thereby identifying potential mechanisms for dis-
tributed search in robotics.
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Figure 1: A) Diagram of a LN with T cell zone shown in blue. B) Observation field. 350 × 350 × 70µm 2PM image of a
region in the T cell zone with T cells tagged with red and green dyes. C) Observed T cell tracks; simulated DCs are in cyan
(discovered) and magenta (undiscovered), all other colours are T cell tracks. D) The model generated set of tracks; starting
positions are the same as the observed T cells.

1.1 T cell Search for DCs in LNs
In this paper, we focus on a search process which is cru-

cial for the initiation of an adaptive immune response: the
search for antigen-bearing dendritic cells (DCs) by T cells
in LNs. In order to mount an effective immune response,
T cells must be activated in LNs (Fig.1A). Antigens are
markers that identify particular pathogens, and each T cell
matches a particular set of antigens. A DC presenting an
antigen indicates that the corresponding pathogen has been
encountered in the organism’s tissues. T cell interactions
with DCs displaying cognate antigen are necessary to trig-
ger an adaptive immune response [15].

To facilitate T cell activation, T cells and DCs interact
within the T cell zone of LNs. The T cell zone is on the order
of 1 mm3 in the inguinal mouse LNs we analyse. T cells and
DCs are on the order of 10 µm in diameter, so each T cell
must search a space 1 million times its own volume in each
lymph node. In secondary lymphoid organs, DCs usually
comprise between 1% and 5% of the T cell zone’s total cell
population. Each T cell interacts with as many DCs as
possible in order to maximize the probability of detecting a
matching antigen [17]. This imposes the need for efficient
random search to mount an effective immune response.

Early response to infection depends on the rate at which
DCs are encountered by T cells in the lymph node. The
adaptive immune system is in an evolutionary arms race
against an exponentially-growing pathogen population. That
evolutionary pressure selects for efficient detection of, and
response to, infection [11]. Therefore we hypothesise that
evolutionary pressure has produced an efficient mechanism
for bringing T cells and DCs together, providing a model
that can be used for random robotic search and in which we
can explore the efficiency of the observed T cell search.

Two-photon microscopy (2PM) has allowed a revolution
in the observation and tracking of cell movement in intact
tissues. We use 2PM to study T cell movement in a LN
that has been excised from a mouse. In this ex vivo exper-
iment, T cells remain alive and motile and their movement
is visualized with 2PM. Laser light scanning through the ex
vivo LN cause molecules bound to T cells to fluoresce at
a particular wavelength. These fluorescence signals are are
localized in 3-dimensions producing a position in space and
time for individual T cells. Knowing the positions of T cells

and the frame rate of image capture, we can also calculate
T cell speeds and step lengths.

1.2 Adaptive and Stochastic Search Strategies
While 2PM provides abundant T cell movement data, it

can be difficult to determine whether cells are responding to
local information or are employing a purely stochastic search
strategy. We describe a method of analysing search patterns
in T cells that allows us to distinguish adaptive search from
purely stochastic search.

Stochastic spatial search is a task common to biological
and engineered agents. In environments where target distri-
butions are unknown or change over time randomized search
strategies are more effective than deterministic strategies [1,
19]. Here we identify two kinds of non-deterministic search
strategies: adaptive strategies that change in response to
features of their environment and purely stochastic strate-
gies that do not. Searchers employing an adaptive strategy
sample the distribution of targets as they are encountered
and use the information gained to create an informed search
strategy. For example Escherichia coli couple their flagella
motility and sensors through an integrative feedback loop
in their signal transduction network. This causes E. coli to
either tumble or run in space depending on whether they are
moving up or down a chemoattractant gradient. As a result
E. coli tend to move to, and remain in, the most resource
rich parts of their environment [3].

Searchers using purely stochastic strategies form a pattern
of movement by sampling from probability density functions
(PDFs) that govern turning angles and step lengths. For
example, Paenibacillus dendritiformis posess internal clocks
that allow changes in direction independent of environmen-
tal cues [4]. Viswanathan et al. characterized the movement
of Diomedea exulans [21], and Humphries et al. described
Thalassarche melanophrys [13] searching for pelagic prey as
statistically driven, where the pattern of motion is fractal,
that is the distribution of step lengths is similar at all scales,
defined as a Lévy flight. Such search patterns are provably
optimal when targets are rare and are not permanently de-
pleted when discovered.

Motion in general can be described as a sequence of po-
sitions over time. We define step length to be the shortest
distance between positions after merging all positions where
the angle turned since the last position is less than 15◦.
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Figure 2: A) An image of an iAnt robot (inset) and a simula-
tion of 6 iAnts foraging for clustered targets. B) Distribution
of the number of different iAnt robots that visit each 8 cm2

grid cell during the search phase of simulated foraging.

The mean squared displacement of a simple random walk
(Brownian motion) grows as the square root of time and on
2-dimensional surfaces Brownian motion is space filling [20].
The result is a pattern of motion that is very thorough in
that it visits all nearby locations eventually, but expands the
search area (extent) relatively slowly. In contrast Lévy walks
are less thorough but they are superdiffusive with displace-
ment exceeding that of Brownian motion until the limit of
ballistic (straight line) motion is reached. Brownian motion
is therefore more efficient at finding local, densely packed
targets. Lévy walks tend to be more efficient when targets
are sparsely distributed in space [21]. The optimal tradeoff
between thoroughness and extent depends, in part, on the
distribution of targets.

Harris et al. [9] describe the movement patterns of T cells
searching for Toxoplasma gondii and find that they are con-
sistent with a Lévy flight. Our prior analysis of T cell move-
ment in the LN also suggested a Lévy pattern of search,
however more detailed analysis of additional data suggests
the pattern of motion of T cells searching for DCs is a combi-
nation of a correlated random walk (CRW), and steps drawn
from a lognormal PDF.

1.3 iAnt Robot Swarms
iAnt robots swarms provide a platform for experiments

in biological search in an embodied robotic system [14].
iAnts are built from commodity parts including an ultra-
sonic rangefinder, a compass, and 2 cameras. An Arduino
Uno microcontroller and iPod touch provide for onboard
computation and sensor integration. (Fig. 2A, inset).

The robots implement an ant-inspired central place forag-
ing algorithm (CPFA) that mimic colonies of seed-harvester
ants using a combination of individual memory and pheromone
trails to efficiently collect clustered resources and carry them
to a central nest. The iAnt CPFA is based in field obser-
vations of seed harvester ants [5]. iAnt behaviour has sev-
eral phases, including, and of primary significance to this
work, adaptive and uninformed statistical random search
phases. An agent-based simulation replicates the movement
and sensing capabilities of these robots. A genetic algorithm
(GA) evolves parameters that control the sensitivity thresh-
old for triggering behaviours, the likelihood of transitioning
from one behaviour to another, and the length of time each
behaviour should last. In this work we analyse data from
a simulation, which is carefully parametrised to reflect the

behaviour, sensing, and navigation error of physical iAnt
robots [10].

2. METHODS

2.1 T cell Observations
Lymph nodes (LNs) were prepared according to the pro-

tocol described previously by Matheu, Parker and Cahalan
[16]. T cells were purified by nylon wool according to Al-
lenspach et al. [2] and labelled with fluorescent dyes, and
then between 5 and 10 million labelled T cells were injected
intravenously into recipient mice. Fifteen to 18 hours later,
after T cells migrated into LNs, the inguinal LNs were re-
moved and recorded using two-photon microscopy (2PM).
Imaging experiments were performed using the methods de-
scribed in Fricke at al. [6]. This observation (Fig. 1B) pro-
vides the data needed to develop a statistical model of T
cell search, informed the simulations of T cells search (Fig.
1D), and allow us to detect deviations between observation
and simulation. We detail the analysis of the movement of
438 T cell tracks, consisting of 11,951 positions, in one ex-
perimental observation of a LN. We also provide summary
statistics that characterize T cell movement in an additional
40 experimental LN observations.

2.2 T cell Model
In other work we built a simulation in which T cells move

stochastically and match the statistical properties of ob-
served T cell motion. Simulated T cells moved using a
purely stochastic search derived from fitting probability den-
sity functions (PDFs) to the the observed T cell tracks using
maximum likelihood estimation (MLE). Here the simulation
serves as the null model (H0) in which T cells do not adapt
to their environment. The simulation is implemented as a
continuous (floating-point) 3D model written in C++. Our
observations have an average volume of 6.3 × 106 µm3. T
cell tracks were observed and recorded as 3D coordinate se-
quences within a bounding box defined by the visible section
of the ex vivo lymph node. Simulations of the observed field
were repeated 10 times. Searchers in the idealized model
start at the same initial positions as the observed T cells,
and exist in a volume equal to the observed field volume
(Fig. 1). Each T cell track in a simulated field corresponded
to a T cell track in the observed field. T cells in the simu-
lated field were constrained to move a total distance equal
to the distance covered by the observed T cells. A T cell
was considered to have encountered a DC if the distance be-
tween a T cell and a DC was less than 10 µm. T cells and
DCs were modelled as spheres with diameter 10 µm.

2.3 Identifying Hot Spots
The field was discretised into 8000 µm3 voxels (the length

of a voxel is 20 µm, approximately twice the diameter of a
T cell). For each voxel in the field, we count how many
times that location was visited by distinct T cell tracks. We
defined hot spots as locations that are visited by more T cell
tracks than would be predicted by the null model (H0).

Hot spots were determined by the following method. We
calculated the number of unique track visits to each location
in each simulation, repeating the simulation of the observed
LN 10 times. We then took the average of the maximum
number of unique track visits to locations over the simula-
tions. This is the H0 prediction for the maximum number of
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visits to any location using a purely stochastic search. Let
x be the maximum number of visits predicted by H0. The
locations in the observed LN were filtered so that only loca-
tions visited more than x times were identified as hot spots.
Fig. 3A shows the distribution of the number of unique T
cells that step into each voxel for the 10 simulations of one
LN and the empirical observation from that same LN. In
the LN shown in Fig. 3, any location visited 8 times or more
was identified as a hot spot.

T cell tracks that visit any hot spot at any time during
the observation were identified as hot tracks. We call all
other tracks cold tracks.

2.4 Search in Robot Swarms
In this paper we analyse data from simulated iAnts, fo-

cusing on one aspect of adaptive iAnt foraging behaviour:
robot movement during the search phase of foraging. iAnts
have 2 search modalities: informed and uninformed corre-
lated random walks (CRWs).

Search using an uninformed walk: the robot has no infor-
mation about the location of targets. In this case it searches
using a correlated random walk with fixed step size and di-
rection θt at time t, defined by Equation 1:

θt = N (θt−1, σ) (1)

Where N (µ, σ) is a Gaussian PDF with mean, µ, and stan-
dard deviation, σ. The standard deviation, σ, determines
how correlated the direction of the next step is with the
direction of the previous step. Robots initially search for re-
sources using an uninformed correlated random walk, where
σ is assigned a fixed value in Equation 2:

σ ← ω (2)

where the value of ω is evolved to maximize foraging effi-
ciency by a genetic algorithm (GA).

Search using an informed walk: If the robot is informed
about the location of resources (because of its own memory
of previously discovered targets or because of pheromone
communication from another robot), it searches using an
informed CRW, where the standard deviation σ is defined
by Equation 3:

σ = ω + (4π − ω)e−λidt (3)

The standard deviation of the successive turning angles of
the informed random walk decays as a function of time t,
producing an initially undirected and localized search that
becomes more correlated over time. This time decay allows
the robot to search thoroughly where it expects to find tar-
gets, but also to straighten its path, increase displacement,
and so search more broadly if a target is not found. If the
robot discovers a target, it transitions to sensing the local
target density. The higher the local density of targets the
higher the probability that the iAnt transitions to using an
informed rather than an uninformed CRW.

2.5 iAnt GA and Experimental Design
We evolved a population of 100 simulated robot swarms

for 100 generations, though convergence consistently occurred
in fewer generations. Fitness was defined as the number of
targets detected by the robot swarm in one hour of simulated
time. We used the recombination and mutation described
in our previous work [14]. Parameters were randomly ini-
tialized using independent samples for each swarm. Robots
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Figure 3: Distribution of the number of unique T cells that
visit each of 800 voxels in space A) averaged over 10 sim-
ulations (standard deviations shown as error bars) and B)
empirically in 1 observation window of a LN. Sites visited
10 or more times (indicated by the red line) are considered
frequently visited hot spots.

within a swarm used identical parameters throughout the
hour-long simulation. During each generation of the GA,
all 100 swarms underwent 8 fitness evaluations, each with
different random placements of 256 targets into 4 clusters.
A new random placement of targets was performed for each
fitness evaluation.

At the end of each generation, the fitness of each swarm
was the sum total of targets collected in the 8 runs of a gener-
ation. Deterministic tournament selection with replacement
(tournament size = 2) was used to select 99 candidate swarm
pairs. Each pair was recombined using uniform crossover
and 10% Gaussian mutation with fixed standard deviation
(0.05) to produce a new swarm population. We used elitism
to copy the swarm with the highest fitness, unaltered, to
the new population – the resulting 100 swarms made up the
next generation.

We used the highest fitness parameter set from 10 runs of
the GA to determine parameters in Equations 1, 2 and 3. We
then ran experiments in simulation to generate iAnt move-
ment data which we analysed and compared to T cell move-
ment. All experiments were simulations of 6 iAnt robots
searching for 256 targets arranged into 4 clusters. Physical
iAnts have an 8 cm2 detection area and explored a 100 m2

area for 1 h. The simulated arena reproduces these dimen-
sions.

3. RESULTS

3.1 Analysis of T cell Hot Spots
Our goal is to identify whether T cells modify their move-

ment in response to local features of the lymph node (LN)
environment, and if so, if those modifications appear to be
adapted to increase search efficiency. First we identify hot
spots that are visited by T cells more frequently than is ex-
pected by our null model. This expectation is produced by
10 repeated simulations that contain no adaptive movement
(Fig. 3). We then characterize the movement of the T cell
tracks that visit those hot spots to determine if T cells visit-
ing hot spots move differently than T cells that do not visit
hot spots.

The counts of unique T cells visiting each voxel are shown
in Fig. 3. The hot spots of one LN along with the T cells
that visited those hot spots are visualized in Fig. 4.

We calculated the step length distribution of the T cells
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Table 1: Comparison of the distribution of step lengths of hot T cell tracks (those that visit hot spots) and
cold tracks (those that do not visit hot spots). In order to compare the 514 hot tracks to the 4,998 cold tracks we
randomly select five sets of 514 uniformly chosen tracks and show the 95% confidence interval (CI) for each cold track statistic.
Bold table columns indicate hot track statistics (the median, variance, skew and kurtosis) that are outside of the 95% CI of
cold tracks. While the mean step length for hot tracks does not fall out of the cold track 95% CI, the significantly smaller
variance, skew and kurtosis of hot tracks reinforce that hot tracks are less heavy tailed than cold tracks and therefore exhibit
a more Brownian pattern of motion.

Mean Median Variance Skew Kurtosis

Hot Tracks 2.84 µm 2.12 µm 8.71 µm2 5.37 54.8

Cold Tracks 3.01±0.67 µm 1.71±0.0979 µm 182±129 µm2 17.2± 6.3 332± 221

Table 2: Comparison of the distribution of step lengths of informed iAnts (those revisiting known resource
locations) and uninformed iAnts (those searching without knowledge of resource locations). The informed tracks
have mean and median step lengths that are shorter than the 95% CI of uninformed tracks, while the variance, skew and
kurtosis of hot tracks are within the 95% CI of uninformed tracks.

Mean Median Variance Skew Kurtosis

Informed Tracks 1.95 m 1.7 m 2.6 m2 1.29 5.03

Uninformed Tracks 2.84±0.16 m 2.83±0.133 m 2.45±1.2 m2 1.08± 0.617 5.42± 1.18

that visit hot spots (shown in color in Fig. 4) and those that
do not visit any hot spots (in gray).

T cell steps lengths are constructed by converting a se-
quence of positions in a T cell track into a sequence of vec-
tors. For a particular track the angle between all consecutive
vectors is calculated. Points at the intersection of vectors
with angles of less than 15◦ are removed. The euclidean dis-
tance between remaining points is calculated to yield step
lengths. Thus a step length is defined as persistent motion
without deviation of more than 15◦.

Longer step lengths indicate tracks that move in a per-
sistent direction, while short step lengths indicate frequent
turns (greater than 15 degrees). Tracks with a more sym-
metrical, closer to Gaussian, distribution of step lengths in-
dicate Brownian motion which achieves a more thorough
search of a local area, while a more skewed step length dis-
tribution is indicative of a Lévy walk which searches more
broadly.

While Fig. 3 and Fig. 4 show data from only one LN,
we increase our statistical power by repeating our hot spot
analysis independently for each of 41 experimental observa-
tions of LN. The threshold for hot spots is specific to each
observation because it depends on the number and initial
location of T cells in each LN. We find that 14 of those 41
observations contain hot spots. We analyse the movement
of the 514 hot T cell tracks, with 15,717 positions, in all 14
of those observations and 4,998 cold cell tracks, consisting
of 157,193 positions, in Fig. 5.

Fig. 5 shows the distribution of step sizes for hot and cold
T cell tracks. While the mean step length is similar for both
classes of T cells, there is more skew in the cold tracks, sug-
gesting more Lévy-like movement in cold tracks and more
thorough Brownian search in hot tracks. The statistical dif-
ferences between hot and cold T cell tracks are summarized
in Table 1: the variance, skew and kurtosis of hot track step
lengths are significantly smaller than the 95% confidence in-
terval of cold track step lengths, indicating more Brownian
motion in hot tracks.

Brownian motion around the hot spots is also suggested

visually in Fig. 4. However not all T cells that visit hot
spots have searched thoroughly. Instead, several relative
straight paths are visible through the hot spots. Some of
those cells travel straight into the hot spots and then search
more thoroughly, and others appear to pass through the
hot spots without stopping. Additionally, there are other
locations not near identified hot spots where cells move in
more Brownian motion. Thus, while there appears to be a
trend toward more Brownian motion near hot spots, T cell
tracks move in various ways, both near hot spots and away
from hot spots.

3.2 Analysis of iAnt Robot Movement
While our analysis suggests more Brownian motion of T

cells visiting hot spots, some cells in Fig. 4 wander across
the hot spot with more persistent directional motion. To
calibrate our hot spot detection approach, and to better un-
derstand how well differences in movement can be resolved,
we conduct similar analysis of simulated iAnt robot data in
which we can identify locations with search targets, and we
can identify different behavioral states that govern move-
ment.

Fig. 2B shows the distribution of the number of iAnt
visits to each location in space: most cells are visited by
only 1 iAnt, but a very small number of cells are visited by
5 or 6 iAnts. The distribution is highly skewed, similar to
the distribution of T cell visits in Fig. 3B. The distribution
of simulated non-adaptive T cells in Fig. 3A is also skewed,
but less so.

Figures 6 and 7 show analysis of iAnt robot movement as
they search for resources in their environment. In Fig. 6, we
show locations visited by iAnts, in this case using a heatmap
with red and yellow sites visited by the most iAnts, and blue
and green sites visited by fewer iAnts. Superimposed on top
of these hot spots are the clusters of tags for which the iAnts
were searching.

Fig. 7 shows the step length distribution of iAnts as they
search for targets using two different correlated random walk
(CRW). Fig. 7 panel A shows iAnts searching in locations
known to have resources (informed iAnts using Eqn. 3) while

109



0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Figure 4: T cell tracks and hot spots from one observed LN.
Black circles show hot spots, with circle size indicating the
number of unique T cell tracks that visit that location. 124
T cells that visit hot spots are shown in colours (each track
a different color) and 313 T cells that do not visit hot spots
are shown in gray.

panel B shows iAnts searching at random without any infor-
mation about resource locations (uninformed iAnts moving
according to Eqn. 2).

For iAnts the difference in movement patterns between
informed and uninformed search is evident in the statisti-
cally lower mean and median of the step length distribution
(summarized in Table 2.) While informed iAnts take smaller
steps, unlike T cells, the shape of the distribution is not dif-
ferent – the variance, skew and kurtosis of the step lengths of
informed iAnts are within the 95% CI of uninformed iAnts.

Thus, iAnts that visit hot spots and T cells that revisit
resource locations have different movement than iAnts and T
cells that don’t visit hot spots or known resource locations.
However iAnts and T cells both differ in the distribiution
of steps. In T cells this is reflected int the more Gaussian
distribution of steps with a higher mean step length which
in iAnts the step lengths become shorter.

4. CONCLUSIONS
We have identified hot spots as locations in the lymph

node (LN) that are visited by T cells more often than would
be expected by chance. T cells that visit those hot spots
move differently: the distribution of step lengths is more
normally distributed, indicative of more Brownian motion,
while distribution of step lengths for other T cells is more
skewed (potentially indicative of a Lévy walk) so that there
is a greater chance of T cells taking a long step in a persistent
direction. The more Brownian motion of T cells that visit
hot spots may indicate more thorough local search, while the
heavier-tailed distributions of T cells that do not visit hot
spots suggests that those T cells move more broadly, perhaps
searching for dispersed targets. These results demonstrate
that T cells react to their environment in non-random ways,
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Figure 5: A) Step length distribution for T cell hot tracks
and B) cold tracks.
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Figure 6: iAnt Search Pattern. A) iAnt tracks of six robots
searching for tags. Blue spots were visited by 1 robot, red
spots by 6 robots. B) The location of target clusters. Black
circles indicate exploited targets. The grey circle correponds
to a target cluster that was encountered but not exploited.
Grid units are 8 cm.

and more specifically, they suggest that T cells that visit hot
spots search more thoroughly.

The differences in the statistical properties of steps pro-
duced by T cells visiting hot spots and those that do not,
suggest that T cells may adapt to an external cue in the en-
vironment to modify their search pattern. It is possible that
T cells search more thoroughly when coming into direct con-
tact with a dendritic cell (DC) or an high endothelial venule
(HEV) (around which DCs tend to be clustered [8]), or they
may respond to a chemical signal or chemokine released by
DCs, HEVs or some other feature of the LN.

Given that T cells are selected to repeatedly contact DCs,
and that DCs are often clustered in space (likely near the
HEVs through which T cells enter the LN [8]), T cells that
search areas with DCs more thoroughly may have more re-
peated contacts as well as contacts with more DCs.

An alternative explanation for hot spots could be that
T cells are tracking fibroblastic reticular cells (FRCs), how-
ever, the more Brownian search around these points suggests
that the tracks are searching thoroughly, not travelling along
structures in the LN.

Our hypotheses about T cells are supported by our anal-
ysis of the movement of iAnt robots. iAnt movement is
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Figure 7: A) iAnts that are re-visiting previously identified
tag locations. B) Step length distribution for iAnts that are
searching randomly without information about previously
identified tag locations. Each histogram divides the region
between the minimum and maximum values into 50 equally
spaced bins. The bar heights correspond to observed fre-
quency normalized so that the sum over bars equals 100%.
.

governed by a set of ant-inspired search behaviours, with
parameters tuned by a genetic algorithm (GA) to maximize
the collection of resources [14]. In the experiments we anal-
yse here, resources are clustered (in Fig. 6, in 4 large clus-
ters) to mimic the clustered DCs targets of T cells. We val-
idate the method of inferring target locations by correctly
inferring the locations of iAnt robots using methods similar
to those we use to infer T cell hot spots (Fig. 4). In ad-
dition to knowing a priori the location of target locations,
we also know more about how iAnt movement behaviours
adapt to their environment. iAnts are programmed to use
an informed correlated random walk (CRW) with lower cor-
relation among successive step directions when the iAnt is
returning to a known target cluster location. This results
in a different mean and median step length for informed vs
uninformed iAnts (Fig. 7).

The nature of the adaptive movement in iAnts (lower
mean and median step lengths for informed iAnts) is dif-
ferent than the hypothesized adaptation in hot T cell tracks
(less skew in the distribution of step lengths indicating more
Brownian search). However, in both cases, the informed
iAnts and the hot T cell tracks appear to search more thor-
oughly then their uninformed counterparts.

This similarity in search behaviour between iAnts and T
cells is noteworthy. iAnts were designed to mimic biological
behaviours of foraging ants. Moses and Banerjee have sug-
gested similarities in how ants and T cells search [18]. De-
spite differences in the search environments and the sensing
abilities of the search agents, both T cells and iAnts change
their movement in response to features of their environment.
T cells (evolved by natural selection to find antigen-bearing
DCs) and iAnts (evolved by GAs to collect targets) change
their movement patterns to search more thoroughly when
targets are nearby.

We identified hot spots in only 34% of our experiments,
and in those experiments approximately 25% of T cells vis-
ited those locations. These are likely underestimates for two

reasons. First, our test identifying hot spots is conservative–
only those locations that were visited more frequently than
by chance were identified as hot spots, but some locations
with fewer visits could be clusters of DCs that happened
not to be visited by many T cell tracks. Additionally, only
a small number of T cells could be visualized during the
experiments. Therefore there may be many more T cells
overlapping in space than the ones we have identified. Not
visualizing a hot spot may simply be a byproduct of the
low density of T cells. In future experimental work we will
identify DCs and T cells in the same lymph node to test our
ability to identify hot spots.

Another limitation of our computational approach is that
it may be difficult to clearly distinguish movement behaviours
of T cells visiting hot spots, simply because many T cells
move in variable ways–sometimes taking long persistent di-
rectional steps and sometimes searching thoroughly. Even
for iAnts, which are specifically programmed to search more
thoroughly where hot spots are identified, the difference in
step distribution is difficult to detect statistically. While
there is a clear shift in the average step length of informed
iAnts, there is a broad range of steps lengths (up to 12 m) in
informed and uninformed iAnts. Our prior experiments [6]
show that an adaptive walk with small changes in turning
angles (and therefore small changes in the step length dis-
tribution) can make a large difference (42.9%) in search effi-
ciency. This suggests that subtle differences in T cell move-
ment might generate important differences in how rapidly T
cells encounter DCs.

Our T cell experiments also suggest new strategies for
iAnt robots. It is possible that different T cells have differ-
ent movement patterns, not necessarily because of reactions
to the environment. Our iAnts are all programmed identi-
cally, and vary in response to information about the envi-
ronment. The variability in T cell behaviour suggests that it
is worth testing variation in search strategies among iAnts.
Additionally, some have proposed that T cells move using
a Lévy walk [9]. Prior analysis suggests that T cell move-
ment is heavy-tailed (if not strictly Lévy) [6]. A heavy-tailed
step distribution vs more Brownian motion (Fig. 5) provides
an alternative model for thorough vs extensive search. One
advantage of this approach over the current iAnt model de-
scribed by Hecker at al. [10] (which increases turning angles
of successive steps to achieve more thorough search) is that a
Lévy-like walk might be tuned with fewer parameters. Addi-
tionally, there is substantial mathematical analysis of Lévy
walk efficiency that may allow iAnts to tune their search
based on analytical predictions of the most efficient walk for
a given environment, without needing to evolve. Thus T
cells may provide a simpler model of movement that may
be more analytically tractable than the current iAnt central
place foraging algorithm (CPFA).

Here we have identified similarities and differences in search
behaviours of iAnts and T cells. Our analysis provides a
computational hypothesis: that hot spots are locations of
DC clusters or signaling molecules and that T cells adapt
movement in response to sensing those environmental cues.
Our future work will test this hypothesis experimentally by
simultaneously visualizing fluorescent DCs and T cells in
the same ex vivo LN. As we learn more about how T cells
move and adapt as they search the LN environment, we can
generate new iAnt search strategies to mimic these T cell
search strategies. This will continue the cycle of computa-

111



tional analysis informing experimental design, and experi-
mental observation informing our understanding of T cell
search processes. As we improve our understanding of how
T cells search, we identify additional mechanisms that com-
putational approaches can emulate.
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