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Zoonotic pathogens represent a growing global risk, yet the speed of adaptive immune activation 
across mammalian species remains poorly understood. Despite orders-of-magnitude differences in 
size and metabolic rate, we show that the time to initiate adaptive immunity is remarkably consistent 
across species. To understand this invariance, we analyse empirical data showing how the numbers 
and sizes of lymph nodes scale with body mass, finding that larger animals have both more and larger 
lymph nodes. Using scaling theory and our mathematical model, we show that larger lymph nodes 
enable faster search times, conferring an advantage to larger animals that otherwise face slower 
biological times. This enables mammals to maintain, or even accelerate, the time to initiate the 
adaptive immune response as body size increases. We validate our analysis in simulations and compare 
to empirical data.

Mammal body masses range over 8 orders of magnitude, from the 2 g bumblebee bat to the 15,0000 kg blue 
whale. Most biological processes slow with increasing body size, following a quarter-power scaling law1–3. 
While the cause of quarter-power scaling is debated4–6, empirical observations consistently show that smaller 
mammals have faster physiology and life history, and larger mammals have slower rates over longer times7–10. 
For example, humans who are 2,500 times larger than mice, are predicted to have heart rates, breathing rates, 
and gestation times that are 7 times slower than mice; actual values are 7 to 14 times slower, within a factor of 2 
of the prediction7,11,12.

Despite the orders of magnitude increase in size and the slower metabolic rate of humans, the initial detection 
of the primary T cell response time in humans is indistinguishable from that of mice (Table 1). Large animals 
clearly require that the immune response remain fast enough to counter exponentially growing pathogens. 
However, the mechanisms that allow larger mammals to respond as quickly as smaller, metabolically faster, ones 
remain unclear. The immune response proceeds through a sequence of interdependent steps, each reliant on the 
preceding one (Fig. 1). Efficient scaling requires that none of these steps becomes a bottleneck.

Lymph nodes (LNs) play a central role in this process. LN are the organs in which antigens indicative of 
infection are first recognized by T cells capable of mounting a pathogen-specific defense. We propose that the 
scaling rules governing the number and size of LNs help explain why two critical steps, transport of antigens to 
LNs (step 2) and T cell contact with antigens carried by DCs within LN (steps 3–5), remain fast across body sizes.

Our analysis considers a simplified model of immune response. We primarily focus on Fig. 1, steps 3 - 5 
within LNs. We focus on generic LN search dynamics without distinguishing CD4+/CD8+ specific mechanisms, 
because no evidence suggests T cell activation dynamics are different between CD4+/CD8+ T cells. We simplify 
the adaptive immune response to generalized steps beginning with infection at peripheral tissue sites (Fig. 1, step 
1) where pathogens can establish and replicate. To initiate the adaptive immune response, dendritic cells (DCs) 
in the tissues activate via Pattern Recognition Receptor signaling to ingest and process antigens produced by 
pathogens; they then upregulate migration receptors such as CCR7, and migrate via lymphatic vessels to draining 
LNs (step 2). While different pathogens activate different pathways and subsets of immune cells, such factors are 
not known to substantially affect the timing of these steps. DCs in LN display antigens (step 3) and naïve T cells 
move through LNs in search of cognate antigen-bearing DCs (step 4). For simplicity we consider CD8+ T cells 
that bind and activate (step 5) and then migrate through the blood to the site of infection (step 6), where they 
kill infected cells displaying cognate antigens (step 7). This simplification of the very complex immune response 
focuses on CD8+ T cell activation that underlies anti-viral adaptive immunity, and not binding differences to 
MHC classes governing CD4+ T cell activation or high affinity antibody generation. We focus on the timing of T 
cell contact with DCs in LNs because this is the initiating event leading to other downstream adaptive immune 
responses.
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Fig. 1.  Simplified schematic of T cell activation by DCs. 1) A pathogen infects tissue, e.g., the lung. 2) DCs 
deliver the captured antigens from tissue through lymphatic vessels to draining LNs. 3) DCs display antigens 
in the LN. 4) Naïve T cells search for cognate antigens presented on the surface of DCs. 5) T cell receptors 
recognize cognate antigens upon encountering an antigen-bearing DC and become activated upon receiving 
the necessary activation signal (step 5). 6) Activated CD8+ T cells proliferate exponentially, and transform 
into cytotoxic T cells (CTLs) that travel through the bloodstream to the inflamed, infected area. 7) CTLs kill 
infected cells that display cognate antigens. We model the timing of search and activation in steps 4 and 5, 
where the adaptive immune response is initiated; the timing of this process depends on LN size.

 

M. musculus (24 g) H. sapiens (62 kg)

Flu: 5 d32,35 Dengue: 7 d36

Flu: 4–6 d37 Flu: 6 d38

Flu: 5–7 d39 LCMV: 4–5 d40

HSV: 5–7 d41,42 RSV: 7–10 d43

LCMV: 5–7 d44 SARS2: 4 d45,46

SARS2: 5–10 d31 SARS2: 6 d47,48

SARS2: 7 d49 SARS2: 7 d50,51

Staph: 6 d52 Staph: 7 d53,54

Staph: 9 d55

n 11 12

Mean 6 d 6 d

Min 4 d 4 d

Max 10 d 10 d

Table 1.  Time to Initial Detection of Activated T Cells in Mice and Humans. Data are rounded to the nearest 
day (d). n is the number of published studies. Means are calculated from the midpoint of each reported range. 
Minimum and maximum values reflect the full span of reported values across all studies. (SARS2: Severe acute 
respiratory syndrome coronavirus 2; LCMV: Lymphocytic choriomeningitis virus; HSV: Herpes simplex virus; 
RSV: Respiratory syncytial virus).
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Scaling Context: A well-established scaling relationship is that organ size typically scales linearly across 
animals. For example, the heart, liver, and kidney are 1,000 times larger in animals weighing 1000 times more4. 
We show that LNs deviate from this pattern and argue that the non-linear allocation of LN size and number 
contributes to the invariance of the immune system response time. We establish scaling relationships for how 
LN volume, and DC and T cell populations scale with body mass, and then we analyze how those scaling 
relationships determine how quickly the first T cells come into contact with DC carrying cognate antigens in LN.

The effect of LN scaling on immune response has been studied previously13–16. Of particular relevance here, 
Perelson and Wiegel14 theorized that if the benefits of larger LN size and number were equally important and the 
total volume of LNs scales linearly with body mass, then LN size and number should scale with the square root 
of body mass (M

1
2 ). For comparison, we show that the spleen, like most organs, scales approximately linearly 

with body mass in Fig. 2A.
We relate the speed of antigen detection in the LN to theoretically predicted and empirically observed volume 

scaling observations with the formula, Mv−(t+d), where M is mass, and v, t, and d are the scaling exponents 
relating LN volume, the number of T cells, and the number of DCs, respectively, to M. We define Initial First 
Contact Time (IFCT) as the time it takes for the very first naïve T cell to come into contact with a cognate antigen 
in a LN, and show that when larger LN have more T cells and DCs, IFCT is faster.

The benefit of more LNs is clear because a higher density of LNs reduces the average distance between 
potential infection sites and the closest LN and therefore the antigen transport time (Fig. 1, step 2)15. However, 
the benefit of larger LNs was previously not obvious, especially since Perelson and Wiegel14 predict that typical 
search times should be independent of the LN volume. That is, if the density of cells is constant, then a typical T 
cell or B cell would find a fixed target in the same amount of time, for any LN volume.

However, if there were no benefit to larger LN volumes, it would be optimal to simply have as many LNs as 
possible to minimize the time for DCs to transport antigen to the LN (Fig. 1, step 2). Empirical data show that 
both the number and size of LNs increase with body mass, but sublinearly with exponents close to 1/2, but with 
the volume exponent slightly higher than the number exponent. One explanation for this was proposed in14: 
larger, and generally longer-lived mammals encounter a greater diversity of pathogens, and therefore need larger 
LNs to maintain a greater diversity of immune cells. Equation (4) suggests a complementary advantage to larger 
LNs: larger LNs hold more copies of T cells cognate to particular antigens, resulting in faster IFCT.

In previously published work17, we present a mathematical model that predicts IFCT between searchers 
and targets distributed at random in a volume. We explored how the number of searchers, the distribution of 
searchers and targets, and the initial distances between searchers and targets affect IFCT. Here, we build on those 
models to make a mathematical prediction for IFCT scaling in LNs and test it in simulations. We show that the 
time to first T cell contact with a DC is invariant with body mass given a constant number of DC, as long as T 
cell density within LNs is fixed. Further, IFCT decreases when both T cell and DC density are constant. One key 
assumption is that there is a constant density of T cells in LNs (and this holds for any scaling of LN volume with 
M), so larger LNs contain more T cells in absolute terms. Thus, in larger LNs, the probability of a T cell–DC pair 
encountering each other increases, reducing expected times to initiate the adaptive immune response.

We base our analysis on the following simplifying Assumptions:

	1.	 T cell density is constant; it does not vary systematically with LN volume or animal mass.

Fig. 2.  Lymphoid organ scaling with mass. Each data point represents a species. Both axes are on a log scale. 
The dashed lines show the reported regression fits. (A) Spleen volume of 38 species is best fit by the regression 
cMµ with c = 1.2 and exponent µ̂ = 1.05 (95% CI [0.95, 1.2]). (B) Number of lymph nodes for 10 species 
is best fit by cMµ with c = 4 and µ̂ = 0.52 (95% CI[0.40, 0.64]). (C) Lymph node volume for 16 species is 
equally well fit in two ways: (1) a theoretically motivated fit including a logarithmic term c1Mµ ln(c2M) (red 
line) with c1 = 1, c2 = 1, and µ̂ = 0.56 (95% CI [0.18, 0.94]) and by (2) by a simpler scaling fit, c1Mµ (green 
line) with c1 = 1, and µ̂ = 0.68 (95% CI [0.51, 0.85]). The p-value of the exponents is significant at the 0.01 
level.
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	2.	 T cells and DCs are uniformly distributed within the T cell zones of LNs.
	3.	 Cell-cell encounters follow a memoryless exponential waiting-time distribution.
	4.	 T cells move by unbiased diffusion in the LN.
	5.	 Scaling exponents are not sensitive to prefactors that might represent details of particular subtypes of im-

mune cells or pathogens, movement patterns of T cells, geometrical shapes of LNs or how cells enter LNs, nor 
to the noise inherent in data collected from published literature. We simplify the complex immune response 
in favor of a more general model.

	6.	 We assume the density of DCs in LN can vary. We consider two bounding cases: a) the number of DCs is 
constant or b) the density of DCs is constant with respect to LN volume.

	7.	 We do not know what fraction of naïve T cells are cognate to antigens produced from any particular path-
ogen. We model two alternative assumptions: a) the density of cognate T cells remains constant across LNs 
(proportional to the density of all T cells), or b) increased diversity of T cells dilutes the density of cognate T 
cells by a logarithmic factor.

Numerous agent-based and ODE models have explored how T cells scan antigen-bearing DCs, examining effects 
of motility, affinity, and spatial organization18–30. These studies demonstrate that individual T cell–DC contacts 
can be prolonged and that not every T cell must engage in order to initiate immunity. However, none has treated 
the very first cognate encounter (which we call IFCT) as a biologically meaningful threshold marking the true 
onset of the adaptive cascade.

IFCT marks the moment when a single cognate T cell first encounters its antigen-presenting DC. Any delay 
directly postpones the immune peak because this time determines the earliest possible start of exponential 
clonal expansion. Hence, IFCT sets a lower bound on how fast the peak can be reached. Unlike peak response 
timing, IFCT depends solely on search dynamics within LNs, making it a key measure for understanding how 
the sizes and numbers of LNs can compensate for slower physiology to preserve rapid detection.

Here, we show, both analytically and in agent-based simulations, that IFCT depends on the number of T cells 
and DCs involved in the search, and given more searchers in larger LNs, IFCT is equally fast or faster in larger 
mammals.

Time to initiate the adaptive immune response is the same in humans and mice
We first establish that the timing of the first detectable adaptive immune response is similar in humans and mice. 
Data on the timing of immune response are available for multiple pathogens in mice and humans because mice 
are the predominant model organism in immunological research, and human data are of direct clinical relevance. 
Table 1 shows that for a range of viral and bacterial pathogens, newly activated T cells are first detected in LNs or 
tissues in both species within 4–10 days, with a typical detection time of 6 days, following the activation of naïve 
T cells that had not previously encountered these antigens. The time to detect activated T cells reflects the time 
for cells to move, activate, and proliferate (Fig. 1, steps 1–6 if T cells are detected in LN, or steps 1–7 if detected in 
infected tissues). In the rest of this paper, we focus primarily on a subset of these steps, T cell search for cognate 
antigen-presenting DCs in LNs (Fig. 1, steps 3–5).

We note that the first detection of activated T cell populations is distinct from the peak T cell concentrations 
that are often measured in blood. It can take additional time to reach the peak after initial activation, particularly 
in larger animals. For example, peak T cell concentrations are observed in 5–10 days in mice31,32 and 14–28 days 
in macaques and humans33,34.

Quantitative measures of initial antigen-specific naïve T cell activation are scarce outside of mice and humans 
due to experimental and ethical constraints. While other species, such as swine, non-human primates, and 
certain rodents, are widely used in infectious-disease studies, detailed early adaptive response kinetics are rarely 
reported; many studies do not collect data before day 7 or day 10 post infection. While we did not find relevant 
reports of multiple different infections for species other than humans and mice, we did find the initial detection 
of T cells in macaques for SARS-CoV-2 and pigs for influenza were 7–10 days56 and 6 days57,58 respectively. 
These times are consistent with the data in Table 1. The consistency of times in Table 1 motivates the question - 
why is the timing of the initial immune response so similar across animals that are so different in size?

Empirical scaling of spleen size
Figure 2(A) shows that spleen volume59,60 scales approximately linearly with mass (also see Table S1). A linear 
regression on log-log transformed data was used to derive an exponent, µ̂ of 1.05 with 95% CI [0.95, 1.2] and 
with R2 = 0.91. The data are consistent with the expectation of linear scaling of spleen size with M. The data are 
also consistent with an additional logarithmic increase (ln(cM)) (See Section S1.2). Such a nonlinear scaling 
could accommodate the predicted logarithmic increase in lymphocyte diversity with M hypothesized in14.

Empirical scaling of lymph node number and size
Lymph node numbers and volumes were estimated from healthy adult animals using standardized geometric 
approximations; details of data selection, geometric assumptions, and measurement methodologies are provided 
in Supplementary Section S1.1. While there is substantial heterogeneity in LN volumes within each species 
(for example, human LNs range in diameter from 2 mm to 38 mm), that variation is dominated by more than 
thousand-fold differences in LN volumes between the largest and smallest mammals in Supplementary Table 
S1. The scaling exponents we find by comparing across all species are consistent with the estimates we find 
comparing just between mice and humans, which are the best characterized species.

Wiegel and Perelson14 propose LN number and size scaling based on two key assumptions: first, maximizing 
LN volume and number are equally important, and second, the total LN volume scales approximately linearly, 
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proportional to body mass M (noting that scaling is also predicted to accommodate a logarithmic increase in T 
cell diversity with M). Based on these assumptions, they predict that the volume of a typical LN, VLN, scales as 
follows, where c is a constant,

	 VLN ∝ M
1
2 ln(cM).� (1)

The number of LNs, NLN, scale as,

	 NLN ∝ M
1
2 .� (2)

Figure 2(B) shows the scaling of LN number. The best fit for 10 species, with M ranging from 24 g mice to 690 
kg horses, for NLN = cMµ is c = 3.8, µ̂ = 0.52, 95% CI [0.40, 0.64], consistent with the Perelson-Wiegel 
prediction of 1

2  exponent with R2 = 0.93.
Figure  2(C) shows the scaling of LN volume with mammal mass for 16 species from 24 g mice to 4500 

kg elephants. Regression of the form VLN = c1Mµ ln(c2M), produces, c1 = 1, and c2 = 1, µ̂ = 0.56 (95% 
CI [0.18, 0.94]) with R2 = 0.84. While this is consistent with the predicted 1

2  exponent, the inclusion of the 
log term allows flexibility in the fit, accommodating a very wide range of scaling exponents. Excluding the 
logarithmic term yields a higher exponent of µ̂ = 0.68 (95% CI [0.51, 0.86]) (Fig. 2C), with R2 = 0.83. The 
Akaike’s Information Criterion values for the models with and without logarithmic terms are very similar, 
−23.42 and −23.26, respectively (See Section S1.3 for computation).

Interestingly, both scaling relationships suggest that total LN volume (the number of LN multiplied by typical 
LN volume) scales superlinearly with body mass, as either M1.08ln(M) or M1.20. Despite sublinear scaling of 
both LN number and size, the total volume of LNs increases slightly superlinearly with body mass, implying that 
larger animals allocate a slightly larger fraction of their body volume to lymphoid tissue.

Since the data roughly align with the theoretical predictions given in Equations (1) and (2), as well as the linear 
scaling of spleen volume, we can estimate human LN volume, LN number, and spleen volume relative to those 
of mice. The theoretical expectation is that LN volume 350 times larger, LN number 50 times larger, and spleen 
2,500 times larger in humans. Actual values from Table S1 are within a factor of two of these approximations. 
Given the more than three orders of magnitude difference in the sizes of humans and mice, predictions that 
are within a factor of two of empirical estimates are useful approximations, similar to the physiological scaling 
predictions of heart rates, breathing rates, and gestation times described in the introduction. Given the similar 
fit for a simpler powerlaw equation VLN ∝ M

2
3 , we include this scaling as well as the theoretically predicted 

M
1
2 ln(M) scaling.

Predicting initial first contact times
We derive a prediction for the time for the first T cell to find its cognate antigen-presenting DC within a LN, 
and then validate the prediction with our agent-based model (See Section S1.6 for detailed understanding of 
our agent-based model). We first consider a generic search problem between a population of T cell searchers 
(NTC) and a population of targets DCs (NDC) in a LN volume (VLN ). In Section S1.4, we derive an equation, 
Derivation 1, for IFCT, represented by the variable τinit:

	
τinit ∝ λ

NTCNDC
� (3)

where λis defined as the mean first-contact time in a volume between a single T cell and a single DC. Celli et. 
al23. showed that λ scales linearly with volume (λ ∝ VLN ) if the searcher and target are randomly placed and the 
searcher moves using Brownian motion (Definition 1 in the Supplement). Since we have the product of NTC and 
NDC in the denominator, search times decrease linearly with increases in both T cells and DCs.

Scaling of Initial First Contact Time (τinit): Assuming diffusive motion of cells within the LN, let LN 
volume scale as VLN ∝ Mv , the number of cognate T cells as NTC ∝ M t, and the number of cognate DCs as 
NDC ∝ Md. Then IFCT scales as:

	
τinit ∝ VLN

NTCNDC
∝ Mv

M tMd
= Mv−(t+d)� (4)

Equation (4), allows us to explore how different assumptions about how the mass scaling of LN volumes, T cell 
numbers and DC numbers affect the time to initiate an immune response. Equation  (4) yields three scaling 
regimes:

•	 Case i: If v < (t + d), then τinit decreases with M. This represents faster scaling of τinit in larger animals in 
systemic infections. This occurs under Assumption 6a where d = v.

•	 Case ii: If v = (t + d), then τinit is invariant with M (constant τinit). This represents constant numbers of 
DCs with respect to M in localised infections when t = v and d = 0. This occurs under Assumption 6b with 
Assumption 7a.

•	 Case iii: If v > (t + d), then τinit increases with M. This occurs with Assumptions 6b with Assumption 7b 
where d = 0 and t < v by a logarithmic factor.

We start with Assumption 7a that the density of cognate T cells are constant within LNs. In that case, it is the 
density of DCs that determine whether the scaling regime for τinit is Case i or ii. Following Assumption 6a or 
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6b, we consider two regimes as assumed bounds on what is biologically realistic. To analyze the systemic Case 
i, we assume the density of DCs carrying antigen in the LN is constant (d = v = t, Assumption 6a). A constant 
density of DC’s could be expected for a systemic infection, for example SARS-CoV-2 that infects some fraction 
of the lung, producing more total amounts of antigen, proportional to lung mass and body mass, M.

In this case, cognate T cell and DC counts scale linearly with LN volume, i.e., both are constant density, so 
t = d = v. Thus, τinit ∝ M−v , and first contacts are faster in bigger animals. How much faster depends on the 
scaling exponent v.

In Fig. 3A, we simulate LN volumes that scale according to Wiegel and Perelson’s theory (Assumption 7b), 
where v = 1/2, that is, LN size increases by a factor of M1/2 multiplied by ln(M) to accommodate increased 
T cell repertoire diversity in larger animals. Thus, the density of particular T cells cognate to the antigens in 
the current infection increases by M1/2 but decreases by ln(M) (See Table S4). Figure 3A validates that the 
simulated τinit is consistent with the predicted scaling, M−1/2ln(M). τinit still decreases, but modified by a log 
factor generating a curvilinear fit (red line). Note that simulated volumes appear at the top of each panel and the 
corresponding animal mass is indicated by the x-axis of Fig. 3.

In the second case (Assumption 6b and Case ii) a localized infection might produce a fixed amount of 
infection, leading to a constant number of antigen-bearing DCs in the LN, so that the density of DC’s decline 
with LN volume. For VLN ∝ M0.5 ln(cM) we predict that τinit is constant, as is validated in simulations in 
Fig. 3B. The result produces a curvilinear logarithmic increase in τinit, following Assumption 6b, 7b and Case 
iii (red line).

Median first contact times
In order to compare τinit with the previous models that considered the typical time for an average T cell to 
contact its cognate DC, we also model the median first-contact times (τ̄ ), the time for a typical T cell to contact 
its cognate antigen-bearing DC.

We model this for both systemic and local infection under Assumption 7b, following the approach outlined 
in14. According to Perelson and Wiegel in14, τ̄  doesn’t depend on the number of T cells (Derivation 4 in 
Supplementary Material). We calculated (τ̄ ) from the same simulations as (τinit), but running until all T cells 
had their first contact with a DC and then calculating the median of those times. Table 2 shows the predicted 
values of τ̄  for both systemic and localized infections. Figure 3 shows how both predicted and simulated τ̄  scale 
for systemic (Panel A) and localized (Panel B) infections (blue lines). See Section S1.4 for full derivation of τinit 
and τ̄  for different cases and Table S2 for all the notations used in this work.

For systemic infections, assuming the theoretical model (τinit ∝ M− 1
2 ln(cM)), then τ̄  scales 

logarithmically with body mass as M0 ln(cM) (See Supplement Prediction 4.1); for the local infection, where 

Fig. 3.  Theoretical Predictions vs. Agent-Based Simulations for Initial First Contact Time (τinit) and Median 
First Contact Time (τ̄ ) in Lymph Nodes. Simulation data (circles) are compared to predictions (dashed) 
and best-fit curves (solid) under two infections: Panel (A) For systemic infection (NDC ∝ M

1
2 ), predicted 

τinit ∝ M−1/2 ln(cM) (dashed red), fitted µ̂ = −0.48 ± 0.10 (solid red). The predicted median first-contact 
time is τ̄ ∝ Mµ ln(cM) with, µ = 0 (dashed blue line). The best fit (solid blue line) for the corresponding 
simulated data (blue points) gives the exponent µ̂ = 0.17 ± 0.010. (B) Localized infection (NDC ∝ M0): 
predicted τinit ∝ M0 ln(cM) (dashed red), fitted µ̂ = 0.040 ± 0.100 (solid red). The predicted median first-
contact time, is τ̄ ∝ Mµ ln(cM) with µ = 0.5 (dashed blue line). The best fit (solid blue line) to the simulated 
data (blue points) gives the value for the exponent, µ̂ = 0.50 ± 0.010. The simulations for both cases are 
consistent with theoretical predictions. Each circle represents the simulation result of 30 simulation replicates 
for τ̄  and 100 replicates for τinit at each estimated LN volume.
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τinit ∝ M0 ln(cM), then τ̄  scales as M
1
2 ln(cM) (See Supplement Prediction 4.2). In both cases, τinit is a 

factor of Mv  faster than τ̄ . τinit takes less than one hour in humans and mice, but for systemic infection τ̄  takes 
1 day for a mouse and over 3 days for a human (see Table 2). For localized infections, τ̄  also takes about 1 day for 
a mouse but takes 100 days for a human! In this case, the typical T cell contact (τ̄ ) happens long after the first T 
cells have begun to activate and exponentially replicate. In some cases, the typical T cell would not even activate 
until long after the infection is resolved. τ̄  is 65 times slower than τinit for a mouse, but 3700 times slower 
for a human. These calculations emphasize the critical role of timely first encounters in initiating an effective 
immune response, particularly in larger animals. We argue that τinit is more consequential than τ̄  for the clonal 
expansion of effector T cells that exponentially replicate (Fig. 1, step 6) after activation and then travel to tissues 
to fight pathogens (Fig. 1, step 7), although τ̄  may be an important factor in determining the magnitude or 
timing of the peak T cell response.

The faster τinit for systemic infections, and approximately invariant τinit for localised infections in Fig. 3 
arise because the time for the rare fortunate first contact is expedited when more T cells are present. However, the 
advantage of a large population doesn’t benefit the typical T cell. Additionally, the last T cell-DC encounter takes 
far longer when there are more T cells. We fit the empirical data to two predictions: 1) the theoretical prediction 
(VLN ∝ M1/2ln(M)) and 2) the more parsimonious (VLN ∝ M2/3) prediction to identify a better fit to the 
data, shown in Fig. 2. We use VLN ∝ M2/3, as a simple approximation of the empirical data.

To further test our model, we reanalyze the empirical data presented in61 using the IFCT model (see Section 
S2 for details). The model in61, assumes that contact between all T cells and DCs happens at a time corresponding 
to τ̄ . We implement this assumption in a Median model (see Section S2 for details) using the median contact 
time from our simulations. In Fig. S2, we compare T cell population dynamics from our IFCT model, which 
accounts for the time for each individual T cell to first contact its DC target, with data from61 over time and with 
data from the Median model. We parameterize our systemic infection model to reflect epitope-specific T-cell 
clone immunodominance and precursor frequency by using empirical activation times; NP118 and GP283 are 
LCMV-derived epitopes presented via MHC class I. NP118 is immunodominant, with a shorter estimated time 
to activation (~6.8 hours). GP283 is subdominant, with a longer estimated activation time (18.8 hours). After 5–6 
days post-infection, the Median model predicts peak T cell populations of 3.9 × 107 for NP118 and 1.2 × 106 
for GP283, whereas the IFCT model predicts more than double these values at 9.1 × 107 and 3.4 × 106. Thus, 
in a mouse, a model using IFCT would predict more than twice the peak number of T cells compared to a 
Median model (See Table S6).

We then scale the models up to estimate the peak T cell population in a larger volume. Compared to the 
Median model, the IFCT model predicts peak T cell populations that are 40-times larger for the larger LNs 
(Fig. S3). Thus, by accounting for the rare early first contact, we estimate far larger peak T cell populations, 
particularly in larger animals. Thus, not only is search faster in bigger LNs, but also, earlier contacts make many 
more T cells during the exponential growth phase.

We predict and simulate the corresponding τinit shown in Fig. S1 (see Section S1.6). We find the theoretical 
model convincing because it accounts for increases in T cell diversity. However, it is not clear whether increased 
T cell diversity results in a logarithmic dilution in the density of cognate T cells (because there are more other T 
cells that are not cognate to the antigens of a particular infection). Alternatively, the increased diversity may result 
in more clonal lines of T cells that are cognate to more antigens (potentially counteracting the dilution). Without 
data to distinguish between these alternatives, we use the theoretical model (with logarithmic reductions in 
density of cognate T cells) and the simple scaling model (where cognate T cell density is constant) to cover both 
of these cases. Table S3 shows that these different assumptions make little practical difference. Importantly, τinit 
is nearly as fast or faster in bigger LN, and τinit is much faster than τ̄ , by a factor of Mv  in all of our modeled 
scenarios.

Discussion
The time to initiate the adaptive immune response is similar in mice and humans despite three-orders of 
magnitude difference in their mass. This unusual mass invariance in initial adaptive immune response times 
is accompanied by an unusual scaling of the organs in which adaptive immunity is initiated. LN number and 
volume both scale sublinearly with mammal mass (M), and the total volume of LNs scales slightly superlinearly 

Mass

Initial First Contact Time Median First Contact Time

NDC ∝ M
1
2 NDC = Constant NDC ∝ M

1
2 NDC = Constant

Brownian Motion

Persistent 
Random 
Walk

Brownian 
Motion

Persistent 
Random 
Walk

Brownian 
Motion

Persistent 
Random 
Walk

Brownian 
Motion

Persistent 
Random 
Walk

24 g (Mouse) 22 min 28 min 14 min 14 min 1 d 0.80 d 0.65 d 0.49 d

1 kg 6.8 min 9.1 min 28 min 28 min 2.3 d 1.7 d 9.1 d 7 d

62 kg (Human) 1.4 min 1.6 min 49 min 60 min 3.6 d 2.9 d 120 d 89 d

Table 2.  DC-T cell Initial and Mean first contact times. We consider 2 cases: i) assuming the number of DC 
in LN scales with M0.5 (constant density of antigen-bearing DC from a systemic infection) and ii) a constant 
number of DC in LN (NDC = Constant). We estimate times for each case, considering that T cells move in 
using either Brownian motion or a persistent random walk.
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with mass. The data are insufficient to differentiate whether total LN volume increases proportional to M1 ln(M) 
following Perelson and Wiegel’s earlier theoretical predictions, or with a simpler M1.2 scaling equation.

Theory14 predicts one-half exponents for the number and average volume of LN if scaling up LN size and LN 
number have equal benefits and the total LN volume is constrained to scale approximately linearly with animal 
mass. The empirical data are roughly consistent with this theoretical prediction. An obvious benefit of having 
more LNs as animal mass increases is that the distance from a site of infection to the nearest LNs is reduced, 
reducing time to transport antigens to the LNs14,15. The analysis above shows a previously undescribed benefit 
of larger LNs: the search for antigen-bearing DCs happens in equal time or faster in larger LNs as long as T cell 
density is constant. Given that LN are larger in larger mammals, T cells initiate adaptive immunity by contacting 
DCs in LNs nearly as fast or faster in larger animals.

The logic is simple: if larger LNs contain more T cells and more DCs in absolute terms, then the first “lucky” 
T cell that quickly contacts a DC will be faster. This speed up is not because T cells and DCs are closer on 
average, but because very short distances to cognate DCs and very fortuitous movements toward DCs become 
more likely given larger populations. Since immune activation can be initiated by fortuitous early interactions, 
this enrichment in the tail of the spatial distance distribution dramatically reduces τinit. Thus, the first time any 
T cell contacts its cognate DC in a LN can occur in minutes, compared to days for the first time a typical T cell 
contacts its cognate DC (τ̄ ).

Our IFCT model, parameterized to match empirical observations of T cell population growth in mouse 
spleens, shows a two-fold increase in T cell population compared to a model that only considers τ̄  rather than 
τinit (Section S2). When scaled to a larger spleen or LN (i.e., the spleen of a macaque or the LN of a cow) the 
peak number of T cells grows 40-fold larger when exponential growth is modeled to start at τinit rather than 
τ̄ . By accounting for exponential growth intiated by the earliest T cells to contact cognate antigen-bearing DCs, 
growth of T cell populations could fight pathogens more effectively than was previously modeled.

Distributed Lymphatic versus Centralized Cardiovascular Networks:  According to metabolic scaling 
theory, quarter-power scaling relationships2,3 arise from systematic increases in transport time in larger animals, 
based on the assumption that resources flow outwards from a single, central source (the heart) through a fractal 
circulatory network. In contrast, the immune system relies on a distributed architecture of LNs62, each acting as 
an independent hub where naïve lymphocytes and antigen-bearing DCs meet. Not only does this decentralization 
permit multiple, parallel activation sites, but individual nodes can also recruit immune cells from distant regions 
via the lymphatic and blood vessels during an active infection. This alternative mode of resource distribution 
underpins our key finding: Bigger LNs enable faster initial T-cell–DC contacts as body mass increases. This is 
because the absolute numbers of both T cells and DCs in each LN grow with LN volume, speeding up τinit. This 
distributed architecture with more LN in larger animals means LN are, on average, closer to sites of infection 
than they would be in a centralized model. This reduces transport times to LN. They are also bigger, reducing 
search times within LN. Empirically, this allows the adaptive immune response to be initiated in constant time 
(Table 1) across animals that vary substantially in body size. This meets the evolutionary imperative to detect and 
control exponentially replicating pathogens in large as well as small mammals.

Here, we have highlighted one advantage that the distributed lymphatic network provides: balancing the 
speed of transport to LNs that comes with many small LNs with the faster detection of antigen within a few large 
LNs. However, there are other constraints on LN size and number. For example, LN must be big enough to hold 
a sufficient diversity of B and T cells and a sufficient number of exponentially growing activated B and T cells 
during an infection; both of these also vary with animal size.

Caveats, Limitations and Open Questions: While our modeling framework provides mechanistic insights 
into how LN sizes and numbers enable rapid initial T cell–DC contacts across body sizes, readers are referred to 
Supplementary Section S3 for a detailed discussion of underlying assumptions, empirical uncertainties, as well 
as limitations and potential extensions of our approach. A particularly noteworthy caveat is that some values 
in our datasets are difficult to measure precisely. The number of LNs in an animal may be under-counted, and 
average LN size may be overestimated if the smallest LN are missed and these factors may particularly skew 
estimates in larger species. Additionally the structure of LN can vary across species.

We have simplified complex immunology and anatomy in favor of a simpler model. The size of the T cell zone 
relative to the measured LN volume, the effective T cell–DC encounter radius, the shape of LN and the diffusion 
coefficient of T cells could all affect our IFCT models. Further, there is variation among the myriad subtypes of 
immune cells, receptors and molecules. However, we assume there is not substantial systematic variation across 
body sizes, so that they do not change how search times scale with mass. While we intend our analysis to be 
general enough to apply to both LN and spleens, the processes of transporting antigens to these tissues and the 
architecture of these tissues are different, so the absolute timing of first contacts may be different in spleens and 
LNs.

It remains an open question to fully explain how the scaling of LN size and number, the complex dynamics 
of replicating T cells63, and the movement of both antigens and T cells into LN62 result in such similar times (6 
days) that the first antigen-specific replicated T cells are observed in both mice and humans in Table 1. Such an 
explanation requires not just analysis of search times within LNs (Figure 1, steps 3 −5), but also times for DC to 
ingest and carry antigen to LN (steps 1 and 2), and subsequently for T cells to replicate, differentiate and travel 
back to infected tissue (steps 5–7).

Despite these caveats, several observations support our estimated scaling exponents and conclusions. The LN 
size and number scalings from the best studied species, mice and humans, are consistent with the NLN ∝ M1/2 
and the two formulations we consider for LN volume: VLN ∝ M1/2ln(M) and VLN ∝ M2/3 (see Supplemental 
Section S1). We also tested model sensitivity to alternative non-Brownian movement patterns of T cells29 and 
found that empirically observed persistent motion decreases cell contact times by a relatively small factor (see 
Table S5), but does not alter the scaling exponent, consistent with Assumption 5.
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Our models are also consistent with the timing of empirical T cell dynamics in Supplemental Section S2. 
Finally, our main conclusions hold regardless of scaling exponents: τinit is similar across body sizes for localized 
infections, faster in larger animals for systemic infections, and substantially faster than τ̄  for all infections.

Broader Implications: Our analysis shows a benefit of large size that has not been previously appreciated. 
While bigger animals are usually slower, here we show that τinit is faster in larger mammals. This makes sense 
intuitively because when there are more searchers (or targets64), the first target is found faster. This phenomenon 
has been studied by physicists as extreme first passage times65. In contrast to our findings of a linear speedup with 
size, previous extreme first passage time (EFPT) analyses find a much slower speedup that is only logarithmic 
with the number of searchers. The differences arise because EFPT considers an infinite number of searchers, all 
starting their search at the same physical location, with search trajectories that overlap. In contrast, in the LN 
search problem, a finite number of dispersed searchers in the 3D volume of a LN can be considered independent 
of each other, leading to the much greater (linear) advantage of large search populations that we identify here.

The different scaling properties of IFCT and typical first contact times are particularly relevant when the 
first contact causes a cascade of downstream events. In the initiation of adaptive immunity, when cognate T 
cells contact DCs, the T cells replicate (Fig. 1, step 5), and changes occur in the LN, including slowing the egress 
of other T cells. Thus, the first contact changes the dynamics of subsequent searches. Further, the exponential 
growth of T cells begins once the first contact is made. Subsequent T cell contacts can amplify the T cell response, 
but τinit causes the first T cell replication that produces activated T cells to migrate to fight infection in tissues 
(Fig.  1, step 7). The first arrival time of T cells in tissue is important in controlling exponentially growing 
pathogens, as has been shown in response to SARS-CoV-2 infection34 and in our simulations of the timing of T 
cell response30.

Understanding the different scaling properties of initial versus typical first contact times is also relevant for 
other immunological processes, for example, the B cell search for T cells in LN (modeled in14) and effector T cell 
search for infected cells in peripheral tissue (modeled in30). The analysis here suggests that initial contacts may 
happen faster in larger animals with more immune cells, but last contacts might take longer66. Last contacts may 
be relevant for understanding the dynamics of final clearance of infections.

This variation in immune response can affect the timing and duration of infection and infectiousness in 
animals of different sizes; this, in turn, can affect how diseases spread across animal communities67. The distinct 
scaling properties of first, typical, and last search times warrant further study in immunology and biology 
more broadly. The different times to achieve typical, first, and last search events affect any biological search that 
involves large numbers of searchers. For example, the first ant in a colony that finds food should similarly depend 
on colony size, and when that first event happens, communication of the food location changes the search times 
for the typical ant in the population68,69. Similarly, the first individual with a rare genetic mutation that confers 
some fitness advantage occurs faster in larger populations and then changes the downstream dynamics. Thus, 
we suggest that understanding how the timing of the initial first successful search depends on the number of 
searchers is an essential and previously neglected question in immunology and, more generally, in biology.

Data availability
All data for spleen volume, LN volume, and LN number used in this paper are collected from the published 
literature and included in a Supplementary in Table S1. Raw data files for initial and median first contact time 
generated from our model are available online at Dryad: https://doi.org/10.5061/dryad.5x69p8df1 All figures, 
except for Fig. 1, are generated using Python 3 in a Jupyter Notebook and Adobe Illustrator. Figure 1 was gen-
erated using BioRENDER. The code for our agent-based model, mathematical analysis, and figure generation is 
available at https://github.com/BCLab-UNM/BiggerIsFaster.
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