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Abstract

In order to trigger an adaptive immune response, T cells move
through lymph nodes searching for dendritic cells that carry
antigens indicative of infection. We observe T cell movement
in lymph nodes and implement those movement patterns as a
search strategy in a team of simulated robots. We find that the
distribution of step-sizes taken by T cells are best described
by heavy-tailed (Lévy-like) distributions. Such distributions
are characterized by many small steps and rare large steps.
Our simulations show that heavy-tailed motion leads to dra-
matically faster search compared to Brownian motion, both
in groups of T cells and in teams of robots. The mechanisms
that cause heavy-tailed movement patterns in T cells are not
fully understood. However, in robot simulations we find that
heavy-tailed movement improves search speed whether that
movement is caused by rules intrinsic to the robots or by
adaptive response to extrinsic factors in the environment.

Introduction

Biologically-inspired computation has a long history. Neu-
ral networks, genetic algorithms, and cellular automata are
just a few well-known examples. In this study we observe
immune cells searching within the three-dimensional space
of mouse lymph nodes. We characterize T cell movement,
demonstrate its effectiveness as a search strategy, and im-
plement a similar search in simulated robots foraging for re-
sources.

Robot teams can be used to perform real-world tasks such
as surveying planetary surfaces and interplanetary space
(Fink et al., 2005), land and sea mine clearance (Weber,
1995), pollution mapping by subsurface robots (Hu et al.,
2011), and survivor location in hazardous environments
(Birk and Carpin, 2006). The success of robot teams search-
ing for resources in an unknown environment depends on
the efficiency of the random search strategy employed.

Biological Context

In order to mount an effective immune response, T cells
must be activated in lymph nodes (Fig. 1). Activation oc-
curs when a T cell discovers and interacts with a dendritic
cell (DC) presenting a specific antigen. Antigens are mark-
ers that identify particular pathogens. Each T cell matches

a particular range of antigens. A DC presenting an antigen
indicates that the corresponding pathogen has been encoun-
tered in the organism’s tissues. If a T cell encounters a DC
displaying cognate antigen then an immune response is trig-
gered (Mackay et al., 2000).

To facilitate T cell activation, T cells and DCs interact
within the T cell zone of lymph nodes (Fig. 1). The T cell
zone is on the order of 1 mm?® in the inguinal mouse lymph
nodes we analyse. T cells and DCs are on the order of 10 pm
in diameter, so for each lymph node the T cell searches a
space some 10% times its own volume. In secondary lym-
phoid organs, DCs usually comprise between 1% and 5% of
the T cell zone’s total cell population. Each T cell interacts
with as many DCs as possible in order to maximize the prob-
ability of detecting a matching antigen (Mirsky et al., 2011).
This imposes the need for efficient random search to mount
an immune response.

Early response to infection depends on the rate at which
DCs are discovered by T cells in the lymph node. The adap-
tive immune system is in an evolutionary arms race against
an exponentially-growing pathogen population. That evo-
Iutionary pressure selects for efficient detection of, and re-
sponse to, infection (Hedrick, 2004). Therefore we hypoth-
esise that evolutionary pressure has produced an efficient
mechanism for bringing T cells and DCs together, provid-
ing a model that can be used for random robotic search.

In this study, we use concepts derived from analysis of
T cell search within lymph nodes to inform random robotic
search. We identify the type of search used by T cells, then
apply the observed three-dimensional search characteristics
to a simple continuous space model. We simulate and char-
acterize the performance of T cell inspired search strategies
in robots using the iAnt robot system (Hecker et al., 2013).
We found heavy-tailed search to be so effective for our simu-
lated iAnts that we have begun incorporating it into the cur-
rent multi-robot foraging algorithm. We find that T cells
use a heavy tailed Lévy search and we show that this search
strategy is more efficient than normally distributed random
search.
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Figure 1: Diagram of a lymph node where T cells search for
DCs.

Figure 2: Image frame taken through two-photon mi-
croscopy of T cells (red and green) moving in the lymph
node. The scale bar at the bottom of the image is 20 um.
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Table 1: Definitions and parameters for the five probability
density functions used to model random motion.

Stochastic Search

Search in 2- or 3-dimensional space is a common task in bio-
logical and engineered systems. Deterministic search strate-
gies may be effective in relatively fixed environments where
the distribution of search targets is known a priori. However,
in environments where target distributions are unknown or
change over time randomized search strategies are more ef-
fective (Stephens and Krebs, 1986; Acar et al., 2003).

Brownian motion is a common model of random walks.
The turning angle between each step is drawn from a uni-
form distribution (Table 1, row 1).

Viswanathan et al. (2002), among others, described Lévy
walks as a model for random walks that differs from classi-
cal Brownian motion. In that formulation, step lengths are
drawn from a PDF over a power-law distribution. Power-
law PDFs are scale-free and have heavy-tails with infinite
variance. As a consequence, Lévy walks have many small
steps and monotonically decreasing but non-zero probability
of taking very large steps (or steps of any finite size). We use
the Pareto (1895) formulation of the power law PDF (Table
1, row 5).

We define heavy-tailed distributions to be those with
positive tails that approach zero less quickly than the
exponentially-distributed PDF (the sub-exponential criteria,
Bryson (1974)). Among many others, the log-normal (Ta-
ble 1, row 3) and power-law distributions meet this criteria,
whereas the normal and exponential distributions do not. We
follow Shlesinger et al. (1999) in defining the heavy-tailed
distribution of velocities (step lengths per time increment)
as a Lévy drive and reserve Lévy walk for a heavy-tailed
distribution of step-lengths with no time component.

Benhamou (2004) argues that Lévy walks are commonly
misidentified and that the true picture is often of switching
between travel phases from cluster to cluster and Brownian
motion once a cluster is found. This pattern of search can be
modelled by a correlated random walk (CRW) (Gillis, 1955;
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Kareiva and Shigesada, 1983). CRWs are a class of random
walks that incorporate non-uniform distributions in turning
angle (Marell et al., 2002).

Related Robotics Work

Simulated robots have used Lévy walks in combination
with chemotaxis-inspired gradient sensing (Nurzaman et al.,
2009) and artificial potential fields (Sutantyo et al., 2010) to
efficiently search unmapped spaces with range-limited sen-
sors. In contrast we consider free Lévy drives in this study
which do not allow long-range interactions between target
and searcher.

In work related to our own, Van Dartel et al. (2004)
evolved primitive neural controllers for agents foraging in
a simulated world. They observed emergent Lévy walk
patterns associated with increasing fitness, converging on
parameters consistent with optimal foraging behaviour de-
scribed by Viswanathan et al. (1999).

Harris et al. (2012) in their supplemental material describe
computer simulation of Brownian motion and the general-
ized Lévy-walk search in a sphere. They report that the
Lévy-walk was able to detect targets more efficiently than
Brownian motion.

Methods
T Cell Observations

Lymph nodes were prepared according to the protocol de-
scribed previously by Matheu et al. (2007). T cells were
purified by nylon wool according to Allenspach et al. (2001)
and labelled with one of two fluorescent dyes: 1uM (mi-
cromolar) Carboxyfluorescein diacetate succinimidyl ester
(CFSE) or 5uM 5-(and-6)- (((4-Chloromethyl) Benzoyl)
Amino) Tetramethylrhodamine (CMTMR ). 5 to 10 x 106
labelled T cells were injected intravenously into recipient
mice. Fifteen to 18 hours later, after T cells migrated into
lymph nodes, the inguinal lymph nodes were removed and
recorded using two photon-imaging.

Imaging experiments were performed using a Biorad Ra-
diance 2000 scanner mounted on an Olympus upright mi-
croscope with a chamber temperature of 37 °C. Explanted
lymph nodes were incubated with a 37 °C solution of Dul-
becco’s Modified Eagle Medium (DMEM) bubbled with
95% Oz and 5% CO; in order to preserve cell motility
(Huang et al., 2007). T cell behaviour within a lymph node
was monitored in the T cell area at a minimum of 70 um
below the surface of the node. For 4D (3 spatial+1 time)
analysis of T cell motility, multiple stacks in the z axis (z
step = 3 um) were acquired every 15-20 s (depending on the
number of z stacks acquired) for 15-40 min, with an overall
field thickness of 40-60 um.

Cell motility was analysed with Imaris 6.0 (Bitplane AG,
Zurich, Switzerland). Tracks that lasted less than 3 time
steps were removed from consideration. Tracks with to-
tal length or displacement from the start location less than
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Figure 3: Example T cell track visualized from experiment
data. Cell positions were captured every 14.93 seconds.

17 um over the course of the observation were assumed to
be non-motile and discarded.

The point sequences generated by Imaris were used to cre-
ate position vectors joining adjacent cell locations and the
Euclidean norm for each vector was calculated. This pro-
vides a distribution of step sizes that were fit to probability
distributions using Maximum Likelihood Estimation (MLE)
described by Myung (2003).

The lab observations described were replicated seven
times, resulting in 63,812 steps in 3,110 T cell tracks. The
maximum velocity over all observations is 1.9 ums~! with

amean of 0.11 yms~1.

Characterizing T Cell Search

Observed T cell population step sizes were fit to more than
50 PDFs. Of those distributions 5 PDFs were selected for
further analysis: normal, log-normal, exponential, power-
law and gamma. Harris et al. (2012) among others used
normal and power-law PDFs to describe cell motion. Log-
normal and exponential distributions are well known models
of many biological processes. These four distributions form
null hypotheses about the motion that we might expect to ob-
serve. The gamma probability density function is included
because we found that, for several of the observations, it was
the best model of the observed step-size distribution (Table
1).

In all cases, the bin sizes and binning methods were varied
in order to reduce the effect of bin sizes on distribution fits.
Adaptive binning rules described by Freedman and Diaco-
nis (1981) were utilized along with various fixed bin sizes.
Binning effects were not observed to be a factor in the fits.
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Figure 4: Clusters of targets with searcher tracks. Undiscov-
ered DCs are pink, discovered DCs are red. Each coloured
track corresponds to the path followed by each of the 6
searchers. 100 clusters of 30 targets are shown.

The relative goodness of fit (GoF) of each PDF to em-
pirical data was evaluated using the Kolmogorov-Smirnov,
the Bayesian information criterion (BIC), described in and
the Akaike information criterion (AIC), as well as with log-
likelihood measures (Table 2). Anderson-Darling calculates
the integral of the area between the empirical data and the
PDF. The Kolmogorov-Smirnov test matches the mean and
variance of the observed data to the PDF and tests for nor-
mality. AIC and BIC incorporate the number of parameters
available in the PDF to be fit to the observed distribution into
the GoF value. AIC and BIC measure the information lost
by replacing the observed data with a model.

Controversy exists around the identification of power-
law PDFs and associated claims of Lévy walk observation.
Many data sets that were not generated by a power-law PDF
can be fit to a power-law distribution (Reynolds, 2008). We
use techniques developed by Clauset et al. (2009) to ad-
dress the fitting problems unique to power-law distributions.
Distributions were fit to data and goodness of fit calcula-
tions were made in MATLAB and Statistics Toolbox Re-
lease 2013a (The MathWorks, Inc., Natick, Massachusetts,
United States. 2013).

In order to determine whether the distribution of step sizes
observed in the total population was due to the distribu-
tion of step sizes across tracks or within tracks we used the
method of Petrovskii et al. (2011). Each track was scaled by
the mean step length of that track and the distribution of the
scaled tracks compared to the original tracks. Since the dis-
tribution was preserved after tracks were scaled the distribu-
tion is due to intra-track step lengths rather than differences
in track means.
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Simulation in a 3D domain

Our 3D simulation models the search space as a continu-
ous unit sphere (Fig. 4). For these experiments we used
m = 16,384 targets divided into n clusters, giving a tar-
get detection density on the same order as that estimated for
DCs in lymph nodes.

Searchers were considered to have discovered a target if
they came within a parameterized distance ~y of a target. Tar-
gets were only available for discovery once. Search steps
are treated as discrete in a continuous space, so detection
of targets is checked at the end of each step and not at in-
termediary points. This detection radius encompasses the
possible role of chemical gradients and DC dendrites reach-
ing out into the surrounding space. Both mechanisms could
be modelled by increasing .

Brownian motion is modelled as a sequence of fixed step
lengths with uncorrelated turning angles. This results in mo-
tion that in the aggregate consists of movements along a tra-
jectory (perhaps containing multiple steps) which is uncor-
related over any sub-sequence of trajectories. This formu-
lation satisfies properties of Brownian motion identified by
Einstein (1905): that trajectory lengths are uncorrelated, and
displacement from a starting location tends towards a nor-
mal distribution. We tested this conclusion by repeating our
experiments with Brownian motion modelled by step sizes
drawn from a normal distribution and found the same per-
formance.

Paths corresponding to the log-normal, exponential,
gamma and power-law distributions were created using the
same procedure, except that the scaling radial length was
drawn from a PDF in which the mean value p is equal to
r. This allows search to make relatively long jumps while
making most of the jumps closer to the fixed step size of
the discrete random walk. The simulation was written in
C++ and PDFs calculated using the BOOST C++ Libraries
1.53.0 (Austern, 2005).

iAnt Robot System

iAnt robots (Hecker et al., 2012) implement ant-inspired al-
gorithms that mimic colonies of seed-harvester ants using a
combination of individual memory and pheromone trail to
collect resources and carry them to a central nest. Robots
are equipped with ultrasound sensors, compasses, and cam-
eras (Fig. 5) mounted on the robots which enable them to
search for and find resources placed in various configura-
tions. The iAnt simulator replicates the movement and sens-
ing capabilities of these robots. iAnt behaviour has several
phases, including a random search phase. The parameters
for this search are determined by a genetic algorithm (GA)
which evolves simulated iAnts and produces a strategy for
the physical robots to use in the real resource collection task.
Targets were distributed into 32 piles of 32 tags.
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Figure 5: Simulation of the physical iAnt robots. Grey dots
are QR tags which are the target of search. Circles are
robot locations. Blue circles indicate a robot that has found
a tag and is returning to a central location. Green circles
are robots engaged in search. The pink line is a pheromone
trail. Each of the 6 iAnts we have built is run by an on-board
iPhone.

Adaptive correlated random walk (ACRW) In previous
implementations, robots explored an experimental area us-
ing a random walk with fixed step size and a direction drawn
from a normal distribution (Table 1, row 1). The standard
deviation o determines how correlated each step is with the
previous step. In the ARCW o varies depending on the ob-
served density of targets in the search location. The search
pattern therefore depends on the local density of targets ob-
served by the robot.

We implemented five search strategies in simulation and
compared them to one another: Brownian motion, a Lévy-
like (log-normal) strategy, correlated log-normal, and two
adaptive correlated random walks. The original ACRW
used normally distributed step sizes; we compare that to an
adaptive walk with log-normal distributed step sizes. With
the exception of Brownian motion, each strategy has differ-
ent parameters that are evolved by the iAnt genetic algo-
rithm (GA). Log-normal search uses an evolved standard
deviation to parameterize its log-normal step length dis-
tribution. Correlated log-normal search includes a second
evolved standard deviation to parameterize a normal distri-
bution of step angles. The adaptive correlated normal search
has two evolved parameters that adapt step angle correla-
tion, depending on whether robots have previously found re-
sources or followed a pheromone trail. Adaptive correlated
log-normal search uses the same two parameters to adapt
step angle, as well as a third parameter to control the distri-
bution of step lengths.

Bioinspired Robotics
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Figure 6: PDFs fit to a probability histogram of T cell veloc-
ities taken from all 7 experiments. Qualitatively and quanti-
tatively the log-normal and gamma distributions fit the data
more closely than the normal distribution. The normal dis-
tribution underpredicts how often large velocities occur, the
log-normal distribution slightly underpredicts the number of
small values, while the gamma distribution slightly under-
predicts the number of large values.

‘ Distribution ‘ AlCc (><105) ‘ Log-likelihood (><104) ‘ K-S ‘ Relative AICc

Normal —1.29 —6.49 0.12,p=0 0.84
Exponential | —1.52 —7.60 0.1413,p =10 | 0.94
Log-normal | —1.59 —7.95 0.0748,p =0 | 0.97
Gamma —1.62 —8.11 0.0460,p =0 | 0.98
Power-Law | —1.64 —8.23 0.0888,p=0 | 1.0

Table 2: Goodness of fit using Akaike information criterion
with finite size correction (AICc), Kolmogorov-Smirnov (K-
S), and Log-likelihood tests.

Results
Characterizing T Cell Search

In all cases BIC and AIC measures were in agreement so
only AIC results are presented.

We first asked what type of PDF best describes the type
of T cell search occurring in lymph nodes. Table 2 shows
the relative goodness of fit for each of the PDFs we con-
sidered when applied to the entire data set of T cell veloci-
ties. The K-S test rejects all the candidates as acceptable fits
(small p-values), this is mostly due to the very large number
of data points being fit. As the number of points increases,
the tolerance for any deviation from the ideal analytic curve
is reduced. Since empirical data necessarily differs from the
ideal parametric PDF, with enough data points no distribu-
tion will be accepted as a fit to the data (i.e. fail to reject Hy
that the observed data and proposed model come from the
same PDF). As a result we use the AICc and log-likelihood
methods to evaluate how well the distributions fit our data.
Lower values for the three tests indicate better fits.

Considering the seven observational experiments sepa-

ECAL 2013

920z Arenuer o uo 3senb Aq ypd L GLYd-2-60. 1 €-292-0-8.6/€2LL061/6001/52/€ L 0ZIe99/4pd-sBuipaaooidyles)npa-jiwjoaulp//:dny woly papeojumoq



Bioinspired Robotics

‘ Distribution ‘ Parameters

Normal mean (p) = 0.11, sigma (o) = 0.08

Exponential | mean () =0.1118

Log-normal | log location (1) = -2.5024, log scale(c) = 0.84

Gamma Shape (a) = 1.75, Scale (b) = 0.06

Power-Law | Shape (k) = -0.05, Scale (o) = 0.1, Threshold () = 0.01

Table 3: Maximum likelihood parameter estimates.
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Figure 7: Comparison of search strategy performance across
changes in target distribution. The y-axis is time for 6
searchers to find 1,000 targets. Bar = median, circle = mean.

rately resulted in power-law, log-normal and the gamma dis-
tributions being the top three fits, with one exception where
the normal distribution ranked third in a single experiment.
While all distributions are rejected by the Kolmogorov-
Schmirnov test when fit to all the data, heavy-tailed distri-
butions fit to individual experiments are not rejected. This
leads us to believe that the data are not perfectly represented
by any particular distribution, though our analysis shows
that the heavy tailed distributions are the best models to de-
scribe T cell movement in lymph nodes.

3D Performance

We then modelled search efficiency to test the search per-
formance of heavy tailed distributions and normal distribu-
tions using the model shown in Fig. 4. Evaluation of the
search performance in simulation reinforces the functional
similarity between the two heavy-tailed distributions (log-
normal and power-law) and the gamma distribution which
was parameterized to take on a heavy-tailed form. The
two non-heavy tailed search strategies (exponential and nor-
mal) failed to discover targets as quickly as the heavy-tailed
search strategies (Fig. 7). Distribution parameters for the
simulation were taken from those observed in PDFs fit to T
cell motion (Table 3).

Heavy-tailed search did better than its competitors in find-
ing targets quickly and with lower variance. Heavy-tailed
search continues to find targets quickly when targets are
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Figure 8: Comparison of search strategies in the iAnt sim-
ulator. We compare Brownian search, log-normal search,
and adaptive correlated random walk strategies. While the
heavy-tailed log-normal search performs better that Brown-
ian search the correlated random walk is able to collect 25%
more QR tags, and the adaptive correlated walks are able to
collect 42% more tags in the same period.

highly clustered and separated by voids because they are
able to cover gaps in less time than Brownian motion can.
The cost heavy-tailed distributions pay is that they do not
search the area they are in as exhaustively as Brownian mo-
tion. If a Brownian searcher happened to start near a cluster
of targets it discovered many of those targets. If clusters
were further removed from the searcher’s initial placement
then Brownian motion would have difficulty reaching the
nearest cluster in a reasonable amount of time, this results
in the high variance seen in Fig. 7. Heavy-tailed search is
not as susceptible to the initial distribution because the rare
but relatively large step sizes allow distances to be covered
quickly so initial conditions to have less impact on search
success. Results presented are for 6 searchers but we ob-
served similar behaviour for single searcher experiments.

iAnt Performance

We then applied the heavy tailed step size to the iANT robot
simulation system for robotic target search. Performance of
Brownian, log-normal, correlated log-normal, adaptive cor-
related Brownian and adaptive correlated log-normal search
is shown in Fig. 8. The log-normal distribution was chosen
to represent the heavy-tailed distributions due to simplicity
of implementation and easy comparison to the normal dis-
tribution of Brownian motion.

The results for the 2D iAnt simulation were consistent
with those from the 3D simulation. The heavy-tailed log-
normal search outperformed Brownian motion in the iAnts.
The adaptive strategies correspond to correlated random
walks in which the correlation between step angles de-
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pends on the target environment observed by the robots.
Both adaptive search strategies significantly outperformed
the non-adaptive algorithms. Robots using log-normal adap-
tive search collected more resources compared to robots us-
ing adaptive Brownian search. This difference is small but
statistically significant: n = 198,9.8%, p < 0.001.

The observed Lévy-walk pattern of step-sizes produced
by the iAnt simulation performing the adaptive Brownian
correlated walk are heavy-tailed.

Discussion

We find that T cell movement in lymph nodes is better
characterized by three different heavy-tailed distributions,
power-law, log-normal and gamma than by exponential or
Brownian motion (Fig. 6). Brownian and exponential distri-
butions have commonly been used to model many processes
in biology, economics, and physics (Mitzenmacher, 2004);
however more recently, biological movement, including T
cell movement through brain tissue (Harris et al., 2012), has
been described by Lévy walks. Our results agree with pre-
vious studies showing that many biological systems adopt
heavy tailed motion strategies, but do not follow an ideal
power-law distribution of step sizes.

We have demonstrated that heavy-tailed distributions fit
T cell motion in lymph nodes well, and are effective
search strategies. Two of those heavy-tailed distributions
are the log-normal and power-law distributions; Mitzen-
macher (2004) discusses the history of debate across many
fields and at many times regarding whether the lognormal or
power-law distributions best model various phenomena. The
heavy-tailed search strategies we simulated showed similar
performance characteristics to one another. In that sense at
least the particular distribution does not appear to matter as
long as it allows a mixture of long steps with low likelihood
and many small steps with high probability.

Our lymph node simulations show that the three heavy-
tailed distributions search equally well, and much better than
Brownian motion (Fig. 7). This is true of search for DCs dis-
tributed in a wide range of cluster densities. Thus the ques-
tion of whether step size distributions are precisely power-
law may not be relevant for determining the efficiency of the
search process.

Viswanathan et al. (1999) shows that Lévy walks are opti-
mal search when target clusters are sparse and targets are rel-
atively slow compared to searchers. Numerous papers iden-
tified Lévy walks in biological data sets. Recently T cells
have been found to perform Lévy walks in mouse brains as
a response to parasitic infection (Harris et al. (2012)).

Using the iANT simulation, we found that walks that
adapt to detected resources perform much better than sim-
pler non-adaptive walks. Log-normal adaptive search per-
formed only slightly better than Brownian adaptive search.
However, we note that the observed distribution of steps
sizes in the Brownian ACRW is also heavy-tailed. The com-
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bination of step directions that are correlated over time (an
intrinsic property of the robots), and adaptation to detected
resources (an extrinsic property of the environment) results
in an effective adaptive search.

In robots, the heavy tailed distributions caused by walks
that adapt to environmental signals are much more effec-
tive than parametric heavy-tailed walks that are not adap-
tive. However adaptive walks may appear to have a heavy-
tailed distribution of step lengths. It is currently unknown
whether T cells might use the same adaptation strategy to
respond to their environment within the lymph node. The
lymph node has a complex structure, which includes the fi-
broblastic reticular cell (FRC) network (Chai et al., 2013).
The FRC scaffold appears to serve multiple functions, but T
cells have been observed, at times, to move along the FRC
(Bajénoff et al., 2006). If the FRC network partially gov-
erns the motion of T cells, it would be considered an extrin-
sic factor as opposed to intrinsic cellular motion. Since T
cells, and the lymph node in which they search for DCs, are
here considered as part of the same system, we do not distin-
guish between intracellular and extracellular factors control-
ling the pattern of search. Therefore, even though extrinsic
factors can shape T cell motion in vivo, our study doesn’t
discriminate whether T cells adapt their walks according to
environmental cues in the lymph node. However this work
suggests that as a hypothesis worth exploring.

In conclusion, our observations of T cell motion provided
inspiration for efficient search in our robot systems and con-
versely observation of search in those robot systems has pro-
vided insight into the possible advantages that search pattern
may provide to the immune system.
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